精英家教网 > 高中数学 > 题目详情
4.已知椭圆的焦点在x轴上,且椭圆的左焦点F1将长轴分成的两条线段的比为1:2,焦距为2,过右焦点F2的直线的倾斜角为45°,交椭圆于A,B两点.求:
(1)椭圆的标准方程;
(2)直线与圆的相交弦长|AB|.

分析 (1)由题意可得c=1,且$\frac{a-c}{a+c}=\frac{1}{2}$,求得a,结合隐含条件求得b,则椭圆方程可求;
(2)由已知得到AB所在直线方程,联立直线方程与椭圆方程,利用弦长公式求得|AB|.

解答 解:(1)如图,
由题意可知,2c=2,c=1.
$\frac{a-c}{a+c}=\frac{1}{2}$,∴a=3c.
则a=3,∴b2=a2-c2=8.
∴椭圆的标准方程为$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{8}=1$;
(2)AB所在直线的斜率k=tan45°=1,
直线方程为y-0=1×(x-1),即y=x-1.
联立$\left\{\begin{array}{l}{y=x-1}\\{\frac{{x}^{2}}{9}+\frac{{y}^{2}}{8}=1}\end{array}\right.$,得17x2-18x-63=0.
设A(x1,y1),B(x2,y2),
则${x}_{1}+{x}_{2}=\frac{18}{17},{x}_{1}{x}_{2}=-\frac{63}{17}$.
∴|AB|=$\sqrt{2}|{x}_{1}-{x}_{2}|=\sqrt{2}•\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$
=$\sqrt{2}•\sqrt{(\frac{18}{17})^{2}-4×(-\frac{63}{17})}$=$\sqrt{2}•\frac{48\sqrt{2}}{17}=\frac{96}{17}$.

点评 本题考查椭圆的简单性质,考查了直线与椭圆位置关系的应用,考查弦长公式的应用,体现了“设而不求”的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知数列{an}中,a1=1,其前n项的和为Sn,且满足an=$\frac{{2{S_n}^2}}{{2{S_n}-1}}$(n≥2)
(Ⅰ)证明:数列$\left\{{\frac{1}{S_n}}\right\}$是等差数列;
(Ⅱ)证明:$\frac{1}{3}{S_1}+\frac{1}{5}{S_2}+\frac{1}{7}{S_3}+…+\frac{1}{2n+1}{S_n}<\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.f(x)=mx2-m2lnx+x,
(Ⅰ)若函数f(x)在x=1处取得极小值,求m的值:
(Ⅱ)求函数f(x)的单调区间:
(Ⅲ)当m>0,x∈[${\frac{1}{e}$,+∞)时,曲线y=f(x)上总存在经过原点的切线.试求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,过椭圆C的左焦点且倾角为60°的直线与圆x2+y2=a2相交,所得弦的长度为$\sqrt{7}$,求椭圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设M是△ABC内一点,且$\overrightarrow{AB}$•$\overrightarrow{AC}$=4$\sqrt{3}$,∠BAC=30°,定义f(M)=(m,n,p),其中m,n,p分别是△MBC,△MCA,△MAB的面积,若f(M)=(1,n,p),则$\frac{1}{n}$+$\frac{4}{p}$的最小值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图,已知函数y=sin($\frac{π}{2}$-πx)的部分图象,点A($\frac{5}{6}$,m),B(${\frac{7}{3}$,n)为函数图象上的点,线段AB与x轴交于点C,及y轴上点P(0,n),则$\overrightarrow{PC}$•$\overrightarrow{AB}$=(  )
A.$\frac{{25-11\sqrt{3}}}{8}$B.$\frac{{25-9\sqrt{3}}}{8}$C.$\frac{{35-11\sqrt{3}}}{8}$D.$\frac{{35-9\sqrt{3}}}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知双曲线的一个顶点与抛物线y2=4x的焦点重合,且双曲线的离心率等于$\sqrt{5}$,则该双曲线的方程为(  )
A.$\frac{x^2}{4}$-y2=1B.x2-$\frac{y^2}{4}$=1C.$\frac{x^2}{5}$-$\frac{y^2}{4}$=1D.5x2-$\frac{{5{y^2}}}{4}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知等比数列{an}的前n项和是Sn,且S20=21,S30=49,则S10为(  )
A.7B.9C.63D.7或63

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设实数x,y满足约束条件$\left\{\begin{array}{l}{x≥0}\\{x≥y}\\{2x-y≤1}\end{array}\right.$,则23x+2y的最大值是(  )
A.64B.32C.2$\sqrt{2}$D.1

查看答案和解析>>

同步练习册答案