精英家教网 > 高中数学 > 题目详情
16.已知双曲线的一个顶点与抛物线y2=4x的焦点重合,且双曲线的离心率等于$\sqrt{5}$,则该双曲线的方程为(  )
A.$\frac{x^2}{4}$-y2=1B.x2-$\frac{y^2}{4}$=1C.$\frac{x^2}{5}$-$\frac{y^2}{4}$=1D.5x2-$\frac{{5{y^2}}}{4}$=1

分析 根据抛物线的方程算出其焦点为(1,0),从而得出双曲线的右焦点为F(1,0).再设出双曲线的方程,利用离心率的公式和a、b、c的平方关系建立方程组,解出a、b的值即可得到该双曲线的方程.

解答 解:抛物线y2=4x的焦点坐标为?(1,0),
∵双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一个顶点与抛物线y2=4x的焦点重合,
∴a=1,
∵双曲线的离心率等于$\sqrt{5}$,
∴e=$\frac{c}{a}$=$\sqrt{5}$,
∴c=$\sqrt{5}$,
∴b2=c2-a2=4,∴x2-$\frac{{y}^{2}}{4}$=1,
故选:B.

点评 本题给出抛物线的焦点为双曲线右焦点,求双曲线的方程.着重考查了抛物线、双曲线的标准方程与简单几何性质等知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知圆C1:x2+y2=r2和椭圆C2:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0).
(1)若过圆C1上一点(x0,y0)作圆C1的切线,则切线方程为x0x+y0y=r2,类比圆的这一性质,若过椭圆C2上一点(x0,y0)作椭圆C2的切线,请写出切线的方程,并证明你的结论;
(2)如图1,设A,B,C,D分别是圆C1与坐标轴的四个交点,过圆C1上任意一点P(x0,y0)(不与A,B,C,D重合)的切线交x轴于点Q,连接PA交x轴于点H,则QD,QH,QC成等比数列,类比圆的这一性质,叙述在椭圆C2(如图2)中类似的性质,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左焦点F1和右焦点F2,上顶点为A,AF2的中垂线交椭圆于点B,若左焦点F1在线段AB上,则椭圆离心率为$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆的焦点在x轴上,且椭圆的左焦点F1将长轴分成的两条线段的比为1:2,焦距为2,过右焦点F2的直线的倾斜角为45°,交椭圆于A,B两点.求:
(1)椭圆的标准方程;
(2)直线与圆的相交弦长|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=ax2+bx(a,b∈R),且满足1<f(1)<2,3<f(2)<8,则f(3)的取值范围是(3,21).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆C的中心在原点,焦点在x轴上,长轴长为2$\sqrt{5}$,它的一个顶点恰好是抛物线x2=4y的焦点.
(I)求椭圆C的标准方程;
(Ⅱ)过椭圆C的右焦点F作直线l交椭圆C于A,B两点,交y轴于M点,若$\overrightarrow{MA}$-λ1$\overrightarrow{AF}$=$\overrightarrow{0}$,$\overrightarrow{MB}$-λ2$\overrightarrow{BF}$=$\overrightarrow{0}$,求证:$\frac{1}{2}$(λ12)为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知抛物线C2:x2=2py(p>0)的通径长为4,椭圆C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,且过抛物线C2的焦点.
(1)求抛物线C2和椭圆C1的方程;
(2)已知圆M过定点D(0,2),圆心M在C2轨迹上运动,且圆M与x轴交于A、B两点,设|DA|=m,|DB|=n,求$\frac{m}{n}+\frac{n}{m}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知点P为双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)右支上的一点,点F1,F2分别为双曲线的左、右焦点,双曲线的一条渐近线的斜率为$\sqrt{7}$,若M为△PF1F2的内心,且S${\;}_{△PM{F}_{1}}$=S${\;}_{△PM{F}_{2}}$+λS${\;}_{△M{F}_{1}{F}_{2}}$成立,则λ的值为$\frac{\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.等腰Rt△ABO内接于抛物线y2=4x,O为抛物线的顶点,若OA⊥OB,则△ABO的面积是16.

查看答案和解析>>

同步练习册答案