精英家教网 > 高中数学 > 题目详情
本题满分14分)已知椭圆C的中心在原点,焦点x轴上,点P为椭圆上的一个动点,且的最大值为90°,直线l过左焦点与椭圆交于AB两点,
的面积最大值为12.
(1)求椭圆C的离心率;(5分)
(2)求椭圆C的方程。(9分)

(1)
(2)
解:(1)根据椭圆的定义,可知动点的轨迹为椭圆,设椭圆方程:  其焦距为,则,则
所以动点M的轨迹方程为:.                 ………………………5分
(2)当直线的斜率不存在时,不满足题意.
当直线的斜率存在时,设直线的方程为,设
,∴.                 ………………………6分
   ∵, ∴
   ∴.(1)             ………………………8分
由方程组 得.  
 得
,             ………………………11分
代入①,得
,解得,. 经验证。   ………………………13分
 所以,直线的方程是.      ………………………14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图,椭圆 的离心率为,其两焦点分别为是椭圆在第一象限弧上一点,并满足,过作倾斜角互补的两条直线分别交椭圆于两点.   
(1)求椭圆的方程.
(2)求点坐标;                               
(3)当直线的斜率为时,求直线的方程.   

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若点在椭圆上,分别是椭圆的两焦点,且,则的面积是                                                                    (    )
A.2B.1C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设椭圆的左、右焦点分别为,上顶点为,过点垂直的直线交轴负半轴于点,且,若过三点的圆恰好与直线相切. 过定点的直线与椭圆交于两点(点在点之间).

(Ⅰ)求椭圆的方程;
(Ⅱ)设直线的斜率,在轴上是否存在点,使得以为邻边的平行四边形是菱形. 如果存在,求出的取值范围,如果不存在,请说明理由;
(Ⅲ)若实数满足,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(13分)已知中心在原点的椭圆的一个焦点为(0 ,),且过点,过A作倾斜角互补的两条直线,它们与椭圆的另一个交点分别为点B和点C。
(1)求椭圆的标准方程;
(2)求证:直线BC的斜率为定值,并求这个定值。
(3)求三角形ABC的面积最大值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

 (本小题共12分)
.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

[理]如图,已知动点分别在图中抛物线及椭圆的实线上运动,若轴,点的坐标为,则的周长的取值范围是   ▲   

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分15分)
知椭圆的离心率,过点的直线与原点的距离为.         
(1)求椭圆的方程;
(2)设为椭圆的左、右焦点,过作直线交椭圆于两点,求的内切圆半径的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知方向向量为
的右焦点,且椭圆的离心率为.
求椭圆C的方程;
若已知点D(3,0),点M,N是椭圆C上不重合的两点,且,
求实数的取值范围.

查看答案和解析>>

同步练习册答案