【题目】已知函数,其中,.
(Ⅰ)讨论函数的单调性;
(Ⅱ)若不等式恒成立,求实数的取值范围.
【答案】(Ⅰ)当时,的单调递增区间为;当时,的单调递增区间为,单调减区间为;(Ⅱ).
【解析】
(Ⅰ)求出函数的定义域,再求导,根据导数和函数的单调性的关系即可求出,
(Ⅱ)不等式恒成立转化为,则问题转化为恒成立时,求的取值范围,根据导数和函数的单调性的关系即可求出.
(Ⅰ)函数的定义域为,.
当时,,函数在区间上是增函数;
当时,由,得;由,得,
所以函数在区间上是增函数,在区间上是减函数.
综上:当时,的单调递增区间为,当时,的单调递增区间为,单调减区间为.
(Ⅱ)不等式.
当时,取,,不合题意;
当时,令,则问题转化为恒成立时,求的取值范围.
由于.令,得,
当时,,当时,,
所以,函数的最大值为
,
于是由题意知,解得,
故实数的取值范围是.
科目:高中数学 来源: 题型:
【题目】已知函数,的最大值为.
(Ⅰ)求实数的值;
(Ⅱ)当时,讨论函数的单调性;
(Ⅲ)当时,令,是否存在区间.使得函数在区间上的值域为若存在,求实数的取值范围;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】大学就业部从该大学2018年已就业的大学本科毕业生中随机抽取了100人进行月薪情况的问卷调查,经统计发现,他们的月薪收入在3000元到10000元之间,具体统计数据如表:
月薪(百万) | |||||||
人数 | 2 | 15 | 20 | 15 | 24 | 10 | 4 |
(1)经统计发现,该大学2018届的大学本科毕业生月薪(单位:百元)近似地服从正态分布,其中近似为样本平均数(每组数据取区间的中点值).若落在区间的左侧,则可认为该大学本科生属“就业不理想”的学生,学校将联系本人,咨询月薪过低的原因,为以后的毕业生就业提供更好的指导意见.现该校2018届大学本科毕业生张茗的月薪为3600元,试判断张茗是否属于“就业不理想”的学生;
(2)①将样本的频率视为总体的概率,若大学领导决定从大学2018届所有本毕业生中任意选取5人前去探访,记这5人中月薪不低于8000元的人数为,求的数学期望与方差;
②在(1)的条件下,中国移动赞助了大学的这次社会调查活动,并为这次参与调查的大学本科毕业生制定了赠送话费的活动,赠送方式为:月薪低于的获赠两次随机话费,月薪不低于的获赠一次随机话费;每次赠送的话费及对应的概率分别为:
赠送话费(单位:元) | 50 | 100 | 150 |
概率 |
则张茗预期获得的话费为多少元?(结果保留整数)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为建设美丽新农村,某村对本村布局重新进行了规划,其平面规划图如图所示,其中平行四边形区域为生活区,为横穿村庄的一条道路,区域为休闲公园,,,的外接圆直径为.
(1)求道路的长;
(2)该村准备沿休闲公园的边界修建栅栏,以防村中的家畜破坏公园中的绿化,试求栅栏总长的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
(1)求的轨迹
(2)过轨迹上任意一点作圆的切线,设直线的斜率分别是,试问在三个斜率都存在且不为0的条件下, 是否是定值,请说明理由,并加以证明.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图、90后从事互联网行业岗位分布条形图,则下列结论正确的是( )
注:90后指1990年及以后出生,80后指1980-1989年之间出生,80前指1979年及以前出生.
A.互联网行业从业人员中从事技术和运营岗位的人数占总人数的三成以上
B.互联网行业中从事技术岗位的人数超过总人数的20%
C.互联网行业中从事运营岗位的人数90后比80前多
D.互联网行业中从事技术岗位的人数90后比80后多
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com