精英家教网 > 高中数学 > 题目详情
11.设等差数列{an}的前n项和为Sn,若S3=a5,S5=25,则公差d=2,a6+a8=26.

分析 根据题意和等差数列的前n项和公式列出方程组,求出公差a和首项a1,利用等差数列的通项公式求出a6+a8的值.

解答 解:∵S3=a5,S5=25,
∴$\left\{\begin{array}{l}{3{a}_{1}+3d={a}_{1}+4d}\\{5{a}_{1}+10d=25}\end{array}\right.$,解得$\left\{\begin{array}{l}{{a}_{1}=1}\\{d=2}\end{array}\right.$,
∴a6+a8=2a1+12d=2+24=26,
故答案为:2;26.

点评 本题考查等差数列的前n项和公式,以及等差数列的通项公式,考查方程思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.辛集中学高二学生要用鲜花布置花圃中ABCDE五个不同区域,要求同一区域上用同一种颜色的鲜花,相邻区域使用不同颜色的鲜花.现有红、黄、蓝、白、紫五种不同颜色的鲜花可供任意选择.恰有两个区域用红色鲜花的概率(  )
A.$\frac{8}{35}$B.$\frac{6}{35}$C.$\frac{4}{35}$D.$\frac{2}{35}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知f(x)=sin2ωx+$\frac{\sqrt{3}}{2}$sin2ωx-$\frac{1}{2}$(x∈R,ω>0),若f(x)的最小正周期为π.
(I)求f(x)的单调递增区间;
(Ⅱ)求f(x)在区间[0,$\frac{π}{2}$]的最大值和最小值.
(Ⅲ)试探究关于x的方程f(x)=a在[0,$\frac{π}{2}$]内解的个数情况,并求出相应实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在下列叙述中:
①若一条直线的倾斜角为α,则它的斜率k=tan α;
②若直线斜率k=-1,则它的倾斜角为135°;
③若A(1,-3),B(1,3),则直线AB的倾斜角为90°;
④若直线过点(1,2),且它的倾斜角为45°,则这条直线必过点(3,4);
⑤若直线的斜率为$\frac{3}{4}$,则这条直线必过(1,1)与(5,4)两点.
所有正确命题的序号是②③④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数 f(x)=$\left\{{\begin{array}{l}{{{(x-1)}^3}(x≥1)}\\{{{(1-x)}^3}({x<1})}\end{array}}$,若关于x的不等式f(x)<f(ax+1)的解集中有且仅有两个整数,则实数a的取值范围为(  )
A.$(-\frac{2}{3},1)$B.$[{-\frac{2}{3},-\frac{1}{2}})∪({\frac{1}{2},\frac{2}{3}}]$C.$({-\frac{2}{3},\frac{2}{3}})$D.$({-\frac{2}{3},\frac{1}{3}})∪(\frac{1}{2},\frac{2}{3})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设M是由满足下列条件的函数f(x)构成的集合:“①f(x)的定义域为R;②方程f(x)-x=0有实数根;③函数f(x)的导数f′(x)满足0<f′(x)<1”.
(1)判断函数f(x)=$\frac{x}{2}$+$\frac{sinx}{4}$是否是集合M中的元素,并说明理由;
(2)证明:方程f(x)-x=0只有一个实数根;
(3)证明:对于任意的x1,x2,x3,当|x2-x1|<1且|x3-x1|<1时,|f(x3)-f(x2)|<2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=x3+ax2-3x(a∈R).
(1)若函数f(x)在区间[1,+∞)上是增函数,求实数a的取值范围;
(2)若x=$\frac{1}{3}$是函数f(x)的极值点,求函数f(x)在[-a,1]上的最大值;
(3)在(2)的条件下,是否存在实数b,使得函数g(x)=bx的图象与函数f(x)的图象恰有3个交点?若存在,请求出b的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=-x2+2ex+m-1,g(x)=x+$\frac{{e}^{2}}{x}$(x>0)(e为自然对数的底数).
(1)若f(e)=2e2-1,求实数m的值;
(2)求函数g(x)的最小值;
(3)若函数h(x)=f(x)-g(x)有两个零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在某大学举行的自主招生考试中,随机抽取了100名考生的成绩(单位:分),并把所得数据列成了如下所示的频数分布表:
组别[40,50)[50,60)[60,70)[70,80)[80,90)[90,100)
频数5182826176
(Ⅰ)求抽取样本的平均数$\overline{x}$(同一组中的数据用该组区间的中点值代表);
(Ⅱ)已知这次考试共有2000名考生参加,如果近似地认为这次成绩Z服从正态分布N(μ,σ2)(其中μ近似为样本平均数$\overline{x}$,σ2近似为样本方差s2=161),且规定82.7分是复试线,那么在这2000名考生中,能进入复试的有多少人?(附:$\sqrt{161}$≈12.7,若z~N(μ,σ2),则P(μ-σ<z<μ+σ)=0.6826,P(μ-2σ<z<μ+2σ)=0.9544.).

查看答案和解析>>

同步练习册答案