分析 (1)求出导函数f′(x),通过f(x)在[1,+∞)上是增函数,得到f′(x)≥0.即可求出a的范围.
(2)由f′($\frac{1}{3}$)=0,求出a,然后求出极值点,求出极值以及端点函数值,即可得到最大值.
(3)两个函数图象恰有3个交点,转化为方程x3+4x2-3x=bx恰有3个不等实根.利用判别式以及根的分布求解即可.
解答 解:(1)f′(x)=3x2+2ax-3,
∵f(x)在[1,+∞)上是增函数,
∴在[1,+∞)上恒有f′(x)≥0.
∴-$\frac{a}{3}$≤1且f′(1)=2a≥0.
∴a≥0.
(2)由题意知f′($\frac{1}{3}$)=0,即$\frac{1}{3}$+$\frac{2a}{3}$-3=0,
∴a=4.
∴f(x)=x3+4x2-3x.
令f′(x)=3x2+8x-3=0得x=$\frac{1}{3}$或x=-3.
∵f(-4)=12,f(-3)=18,f($\frac{1}{3}$)=-$\frac{14}{27}$,f(1)=2,
∴f(x)在[-a,1]上的最大值是f(-3)=18.
(3)若函数g(x)=bx的图象与函数f(x)的图象恰有3个交点,即方程x3+4x2-3x=bx恰有3个不等实根.
∵x=0是其中一个根,
∴方程x2+4x-(3+b)=0有两个非零不等实根.
∴$\left\{\begin{array}{l}{△=16+4(3+b)>0}\\{-(3+b)≠0}\end{array}\right.$,
∴b>-7且b≠-3.
∴满足条件的b存在,其取值范围是(-7,-3)∪(-3,+∞).
点评 本题考查函数的导数的综合应用,函数的最值以及根的分布的应用,考查计算能力转化思想的应用.
科目:高中数学 来源: 题型:选择题
| A. | 15° | B. | 30° | C. | 45° | D. | 60° |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{1+\sqrt{3}}}{2}$ | B. | -$\frac{{1+\sqrt{3}}}{2}$ | C. | $\frac{{1+\sqrt{2}}}{2}$ | D. | -$\frac{{1+\sqrt{2}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com