精英家教网 > 高中数学 > 题目详情
8.在单调递增的等差数列{an}中,a1+a3=8,且a4为a2和a9的等比中项,
(1)求数列{an}的首项a1和公差d;
(2)求数列{an}的前n项和Sn

分析 (1)运用等差数列的性质和等比中项的定义,结合等差数列的通项公式,计算可得首项a1和公差d;
(2)运用等差数列的通项公式和求和公式,计算即可得到所求和.

解答 解:(1)在单调递增的等差数列{an}中,a1+a3=2a2=8,
即有a2=4,又因为a4为a2和a9的等比中项,
可得a42=a2a9
即有4(4+7d)=(4+2d)2
解得a1=1,d=3(0舍去);
(2)由(1)可得${a_n}=3n-2(n∈{N^*})$,
则${S_n}=\frac{n(3n-1)}{2}\;\;(n∈{N^*})$.

点评 本题考查等差数列的通项公式和求和公式的运用,考查等比中项的定义,以及化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.(1)已知x<-2,求函数$y=2x+\frac{1}{x+2}$的最大值.
(2)若实数x、y满足x2+y2+xy=1,求x+y的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设等差数列{an}的公差为d>1,前n项和为Sn,等比数列{bn}的公比为q.已知b1=a1,b2=2,q=d,S10=100.
(1)求数列{an},{bn}的通项公式;
(2)记${c_n}=\frac{a_n}{b_n}$,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知等差数列{an}中,a3,a7是方程x2-8x+9=0的两个根,则a5等于(  )
A.-3B.4C.-4D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.△A BC是边长为2的等边三角形,已知向量$\vec a$,$\vec b$满足$\overrightarrow{{A}{B}}=2\vec a$,$\overrightarrow{{A}C}=2\vec a+\vec b$,则下列结论不正确的是(  )
A.$|{\overrightarrow b}|=2$B.$\overrightarrow a•\overrightarrow b=-1$C.$|{\overrightarrow a+\overrightarrow b}|=\sqrt{7}$D.$({4\overrightarrow a+\overrightarrow b})⊥\overrightarrow b$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知正项数列{an}的前n项和为Sn,且$4{S_n}={({a_n}+1)^2}\;,\;n∈{N^*}$.
(1)求证:数列{an}是等差数列;
(2)若bn=$\frac{{a}_{n}}{{2}^{n}}$,数列{bn}的前n项和为Tn,求Tn
(3)在(2)的条件下,是否存在常数λ,使得数列{$\frac{{T}_{n}+λ}{{a}_{n+2}}$}为等比数列?若存在,试求出λ;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知圆锥的高为4,体积为4π,则底面半径r=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.1340°角是(  )
A.第一象限角B.第二象限角C.第三象限角D.第四象限角

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=$\frac{1-x}{x}$+lnx,则f(x)在[$\frac{1}{2}$,2]上的最大值等于1-ln2.

查看答案和解析>>

同步练习册答案