精英家教网 > 高中数学 > 题目详情
19.设等差数列{an}的公差为d>1,前n项和为Sn,等比数列{bn}的公比为q.已知b1=a1,b2=2,q=d,S10=100.
(1)求数列{an},{bn}的通项公式;
(2)记${c_n}=\frac{a_n}{b_n}$,求数列{cn}的前n项和Tn

分析 (1)利用已知条件求出数列的首项与公差,然后求解通项公式.
(2)化简数列的通项公式,然后利用错位相减法求和即可.

解答 (本小题(12分),第1小题(6分),第2小题6分)
解:(1)由题意可得:$\left\{\begin{array}{l}{10{a}_{1}+45d=100}\\{{a}_{1}d=2}\end{array}\right.$,
解得$\left\{\begin{array}{l}{{a}_{1}=9}\\{d=\frac{2}{9}}\end{array}\right.$(舍去)或$\left\{\begin{array}{l}{{a}_{1}=2}\\{d=2}\end{array}\right.$,
所以an=2n-1,bn=2n-1
(2)∵${c_n}=\frac{a_n}{b_n}$,cn=$\frac{2n-1}{{2}^{n-1}}$,
∴Tn=$1+\frac{3}{2}+\frac{5}{{2}^{2}}+\frac{7}{{2}^{3}}$+…+$\frac{2n-1}{{2}^{n-1}}$…①,
$\frac{1}{2}{T_n}=\frac{1}{2}+\frac{3}{2^2}+\frac{5}{2^3}+\frac{7}{2^4}+\frac{9}{2^5}+…+\frac{2n-1}{2^n}$…②
①-②可得$\frac{1}{2}{T_n}=2+\frac{1}{2}+\frac{1}{2^2}+…+\frac{1}{{{2^{n-2}}}}-\frac{2n-1}{2^n}=3-\frac{2n+3}{2^n}$,
故Tn=$6-\frac{2n+3}{{{2^{n-1}}}}$.(12分)

点评 本题考查数列的通项公式的求法,等差数列以及等比数列的应用,考查数列求和的方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.在△ABC中,a,b,c是角A,B,C所对的边,a=2b,C=60°,则B=30°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=sin(2x+$\frac{π}{6}$)+sin(2x-$\frac{π}{6}$)+cos2x+a(a∈R,a为常数).
(1)求函数的最小正周期和函数的单调递增区间;
(2)若x∈[0,$\frac{π}{2}$]时,f(x)的最小值为-2,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.曲线y=ln(2x+1)上的点到直线2x-y+3=0的最短距离为$\frac{3\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设等差数列{an}的前n项和为Sn,若a3=3,Sm=19,Sm+5=14,则m的值为(  )
A.9B.10C.11D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.复数$\frac{(i-1)i}{2}$(i为虚数单位)的虚部是(  )
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$\frac{1}{2}i$D.$-\frac{1}{2}i$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=e2x-1,直线l过点(0,-e)且与曲线y=f(x)相切,则切点的横坐标为(  )
A.1B.-1C.2D.e-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在单调递增的等差数列{an}中,a1+a3=8,且a4为a2和a9的等比中项,
(1)求数列{an}的首项a1和公差d;
(2)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知两点A(2,2),B(2,1),O为坐标原点,若|$\overrightarrow{OA}$-t$\overrightarrow{OB}$|≤$\frac{2\sqrt{5}}{5}$,则实数t的值为(  )
A.$\frac{6}{5}$B.$\frac{5}{6}$C.1D.$\frac{4}{3}$

查看答案和解析>>

同步练习册答案