精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)=sin(2x+$\frac{π}{6}$)+sin(2x-$\frac{π}{6}$)+cos2x+a(a∈R,a为常数).
(1)求函数的最小正周期和函数的单调递增区间;
(2)若x∈[0,$\frac{π}{2}$]时,f(x)的最小值为-2,求a的值.

分析 (1)利用两角和与差以及辅助角公式基本公式将函数化为y=Asin(ωx+φ)的形式,再利用周期公式求函数的最小正周期,最后将内层函数看作整体,放到正弦函数的增区间上,解不等式得函数的单调递增区间;
(2)x∈[0,$\frac{π}{2}$]时,求出内层函数的取值范围,结合三角函数的图象和性质,求出f(x)的最小值,即得到a的值.

解答 解:函数f(x)=sin(2x+$\frac{π}{6}$)+sin(2x-$\frac{π}{6}$)+cos2x+a(a∈R,a为常数).\
化简可得:f(x)=$\frac{\sqrt{3}}{2}$sin2x+$\frac{1}{2}$cos2x+$\frac{\sqrt{3}}{2}$sin2x-$\frac{1}{2}$cos2x+cos2x+a
=$\sqrt{3}$sin2x+cos2x+a
=2sin(2x+$\frac{π}{6}$)+a
(1)∴函数的最小正周期T=$\frac{2π}{2}=π$.
令$-\frac{π}{2}+2kπ$≤2x+$\frac{π}{6}$$≤\frac{π}{2}+2kπ$,k∈Z.
得:$kπ-\frac{π}{3}$≤x≤$\frac{π}{6}+kπ$,
∴函数f(x)的单调递增区间为[$kπ-\frac{π}{3}$,$\frac{π}{6}+kπ$],k∈Z.
(2)由f(x)=2sin(2x+$\frac{π}{6}$)+a
∵x∈[0,$\frac{π}{2}$]时,
可得:2x+$\frac{π}{6}$∈[$\frac{π}{6}$,$\frac{7π}{6}$].
当2x+$\frac{π}{6}$=$\frac{7π}{6}$时,f(x)取得最小值为2×$(-\frac{1}{2})$+a=a-1.
∴a-1=-2,
故得a=-1.

点评 本题主要考查对三角函数的化简能力和三角函数的图象和性质的运用,利用三角函数公式将函数进行化简是解决本题的关键.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.经过平面α外两点,作与α平行的平面,则这样的平面可以作(  )
A.1个或2个B.0个或1个C.1个D.0个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知△ABC三边所在直线方程:lAB:3x-2y+6=0,lAC:2x+3y-22=0,lBC:3x+4y-m=0(m∈R,m≠30).
(1)判断△ABC的形状;
(2)当BC边上的高为1时,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.(1)已知x<-2,求函数$y=2x+\frac{1}{x+2}$的最大值.
(2)若实数x、y满足x2+y2+xy=1,求x+y的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=$\left\{\begin{array}{l}{x+1,x≥0}\\{{x}^{2},x<0}\end{array}\right.$,则f[f(2)]的值为(  )
A.-1B.1C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.(1)解不等式$\frac{x+5}{{{{(x-1)}^2}}}>2$;
(2)若不等式kx2-2x+6k<0(k≠0)的解集为R,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.6人排成一排,其中甲乙必须排在一起,丙丁不能排在一起,则不同的排法有(  )种.
A.72B.144C.240D.480

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设等差数列{an}的公差为d>1,前n项和为Sn,等比数列{bn}的公比为q.已知b1=a1,b2=2,q=d,S10=100.
(1)求数列{an},{bn}的通项公式;
(2)记${c_n}=\frac{a_n}{b_n}$,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知圆锥的高为4,体积为4π,则底面半径r=$\sqrt{3}$.

查看答案和解析>>

同步练习册答案