精英家教网 > 高中数学 > 题目详情

如图,△ABC内接于⊙O,AB =AC,直线MN切⊙O于点C,弦BD∥MN,AC与BD相交于点E.
(1)求证:△ABE≌△ACD;
(2)若AB =6,BC =4,求AE.

(1)由边角边即可证得   (2)

解析试题分析:(Ⅰ)在ΔABE和ΔACD中,
  ∠ABE=∠ACD           
又,∠BAE=∠EDC  ∵BD//MN   ∴∠EDC=∠DCN
∵直线是圆的切线,∴∠DCN=∠CAD ∴∠BAE=∠CAD
∴ΔΔ(角、边、角)               
(Ⅱ)∵∠EBC=∠BCM ∠BCM=∠BDC
∴∠EBC=∠BDC=∠BAC  BC=CD=4
又  ∠BEC=∠BAC+∠ABE=∠EBC+∠ABE=∠ABC=∠ACB  
∴    BC=BE=4                                      
设AE=,易证 ΔABE∽ΔDEC
又 
     
考点:圆內接多边形的性质与判定与圆有关的比例线段
点评:本题考查与圆有关的比例线段,考查圆内接多边形的性质与判定,考查用方程思想解决几何中要求的线段的长,本题是一个应用知识点比较多的题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,为圆的直径,为垂直于的一条弦,垂足为,弦交于点.

(Ⅰ)证明:四点共圆;
(Ⅱ)证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,

(I)
(II)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,⊙O内切△ABC的边于D、E、F,AB=AC,连接AD交⊙O于点H,直线HF交BC的延长线于点G.

⑴证明:圆心O在直线AD上;
⑵证明:点C是线段GD的中点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,BA是圆O的直径,延长BA至E,使得AE=AO,过E点作圆O的割线交圆O于D、E,使AD=DC,

求证:;
若ED=2,求圆O的内接四边形ABCD的周长。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

A.(几何证明选讲选做题)


如图,已知AB为圆O的直径,BC切圆O于点BAC交圆O于点PE为线段BC的中点.求证:OPPE

B.(矩阵与变换选做题)
已知MN,设曲线y=sinx在矩阵MN对应的变换作用下得到曲线F,求F的方程.
C.(坐标系与参数方程选做题)
在平面直角坐标系xOy中,直线m的参数方程为t为参数);在以O为极点、射线Ox为极轴的极坐标系中,曲线C的极坐标方程为ρsinθ=8cosθ.若直线m与曲线C交于AB两点,求线段AB的长.
D.(不等式选做题)
xy均为正数,且xy,求证:2x≥2y+3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,已知点P是⊙O外一点,PS、PT是⊙O的两条切线,过点P作⊙O
的割线PAB,交⊙O于A、B两点,与ST交于点C,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分)
如图,AD是⊙O的直径,AB是⊙O的切线,M, N是圆上两点,直线MNAD的延长线于点C,交⊙O的切线于B,BMMNNC=1,求AB的长和⊙O的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中, ,平分于点.
证明:(1)
(2)

查看答案和解析>>

同步练习册答案