精英家教网 > 高中数学 > 题目详情
已知抛物线y2=4x的准线与双曲线 
x2
a2
-y2=1 (a>0)
交于A,B两点,点F为抛物线的焦点,若△FAB为直角三角形,则a的值为(  )
A、
5
B、
3
C、
3
3
D、
5
5
分析:求出抛物线的准线为x=-1,焦点为F(1,0).根据对称性可得△FAB是等腰直角三角形,从而算出A、B的坐标,将其代入双曲线方程,解关于a的等式即可得到实数a的值.
解答:解:精英家教网∵抛物线的方程为y2=4x,
∴抛物线的准线为x=-1,焦点为F(1,0).
又∵直线x=-1交双曲线 
x2
a2
-y2=1
于A、B两点,△FAB为直角三角形.
∴△FAB是等腰直角三角形,AB边上的高FF'=2
由此可得A(-1,2)、B(-1,-2),如图所示
将点A或点B的坐标代入双曲线方程,得
1
a2
-4=1
,解之得a=
5
5
(舍负)
故选:D
点评:本题给出抛物线与双曲线满足的条件,在已知抛物线的方程情况下求双曲线的标准方程.着重考查了抛物线、双曲线的标准方程与简单几何性质等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知抛物线y2=4x的焦点为F,其准线与x轴交于点M,过M作斜率为k的直线与抛物线交于A、B两点,弦AB的中点为P,AB的垂直平分线与x轴交于点E(x0,0).
(1)求k的取值范围;
(2)求证:x0>3;
(3)△PEF能否成为以EF为底的等腰三角形?若能,求此k的值;若不能,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线
y
2
 
=4x
的焦点为F,过点A(4,4)作直线l:x=-1垂线,垂足为M,则∠MAF的平分线所在直线的方程为
x-2y+4=0
x-2y+4=0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=4x,焦点为F,顶点为O,点P(m,n)在抛物线上移动,Q是OP的中点,M是FQ的中点.
(1)求点M的轨迹方程.
(2)求
nm+3
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=4x与直线2x+y-4=0相交于A、B两点,抛物线的焦点为F,那么|
FA
|+|
FB
|
=
7
7

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=4x,其焦点为F,P是抛物线上一点,定点A(6,3),则|PA|+|PF|的最小值是
7
7

查看答案和解析>>

同步练习册答案