精英家教网 > 高中数学 > 题目详情

【题目】为践行“绿水青山就是金山银山”的发展理念,某城区对辖区内三类行业共200个单位的生态环境治理成效进行了考核评估,考评分数达到80分及其以上的单位被称为“星级”环保单位,未达到80分的单位被称为“非星级”环保单位.现通过分层抽样的方法获得了这三类行业的20个单位,其考评分数如下:

类行业:858277788387

类行业:766780857981

类行业:8789768675849082

(Ⅰ)计算该城区这三类行业中每类行业的单位个数;

(Ⅱ)若从抽取的类行业这6个单位中,再随机选取3个单位进行某项调查,求选出的这3个单位中既有“星级”环保单位,又有“非星级”环保单位的概率.

【答案】(Ⅰ)三类行业中每类行业的单位个数分别为606080.(Ⅱ)

【解析】

第一问利用分层抽样的概念直接计算即可;第二问是古典概率模型,先列出所有的基本事件,然后再找出3个单位都是“星级”环保单位或都是“非星级”环保单位所包含基本事件的个数,即可求出3个单位中既有“星级”环保单位,又有“非星级”环保单位的概率。

(I)由题意,得抽取的三类行业单位个数之比为.

由分层抽样的定义,有

类行业的单位个数为

类行业的单位个数为

类行业的单位个数为

故该城区三类行业中每类行业的单位个数分别为606080.

(Ⅱ)记选出的这3个单位中既有“星级”环保单位,又有“非星级”环保单位为事件.

3个单位的考核数据情形有,共20种.

3个单位都是“星级”环保单位的考核数据情形有,共4种,没有都是“非星级”环保单位的情形,

故这3个单位都是“星级”环保单位或都是“非星级”环保单位的情形共4种,

故所求概率.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为,离心率为

1)求椭圆的标准方程;

2是椭圆上不同的三点,若直线的斜率之积为,试问从两点的横坐标之和是否为定值?若是,求出这个定值;若不是,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知圆与圆关于直线对称.

1)求直线的方程;

2)设圆与圆交于点,点为圆上的动点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校在2016年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,得到的频率分布表如下表所示.

组号

分组

频数

频率

1

5

0.050

2

n

0.350

3

30

p

4

20

0.200

5

10

0.100

合计

100

1.000

(1)求频率分布表中np的值,并估计该组数据的中位数(保留l位小数);

(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第345组中用分层抽样的方法抽取6名学生进入第二轮面试,则第345组每组各抽取多少名学生进入第二轮面试?

(3)在(2)的前提下,学校决定从6名学生中随机抽取2名学生接受甲考官的面试,求第4组至少有1名学生被甲考官面试的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校在2016年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,得到的频率分布表如下表所示.

组号

分组

频数

频率

1

5

0.050

2

n

0.350

3

30

p

4

20

0.200

5

10

0.100

合计

100

1.000

(1)求频率分布表中np的值,并估计该组数据的中位数(保留l位小数);

(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第345组中用分层抽样的方法抽取6名学生进入第二轮面试,则第345组每组各抽取多少名学生进入第二轮面试?

(3)在(2)的前提下,学校决定从6名学生中随机抽取2名学生接受甲考官的面试,求第4组至少有1名学生被甲考官面试的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在梯形中,,四边形为矩形,且平面.

1)求证:平面

2)点在线段上运动,设平面与平面所成锐二面角为,试求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为且满足:

(1)证明:是等比数列,并求数列的通项公式.

(2)设,若数列是等差数列,求实数的值;

(3)在(2)的条件下,设 记数列的前项和为,若对任意的存在实数,使得,求实数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国古代数学名著《九章算术》中有这样一个问題:今有牛、马、羊食人苗,苗主责之粟五斗,羊主曰:“我羊食半马、“马主曰:“我马食半牛,”今欲衰偿之,问各出几何?此问题的译文是:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿5斗粟、羊主人说:“我羊所吃的禾苗只有马的一半,”马主人说:“我马所吃的禾苗只有牛的一半,“打算按此比例偿还,他们各应偿还多少?该问题中,1斗为10升,则马主人应偿还( )升粟?

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个盒子里装有大小均匀的6个小球,其中有红色球4个,编号分别为1234;白色球2个,编号分别为45,从盒子中任取3个小球(假设取到任何个小球的可能性相同).

1)求取出的3个小球中,含有编号为4的小球的概率;

2)在取出的3个小球中,小球编号的最大值设为,求随机变量的分布列及数学期望.

查看答案和解析>>

同步练习册答案