精英家教网 > 高中数学 > 题目详情
17.已知集合A={x|y=ln(x-1)},B={x|-1<x<2},则(∁RA)∩B=(  )
A.(-1,1)B.(-1,2)C.(-1,1]D.(1,2)

分析 直接求解对数函数化简集合A,然后求出∁RA,再由交集的运算性质计算得答案.

解答 解:∵A={x|y=ln(x-1)}=(1,+∞),∴∁RA=(-∞,1],
∵B={x|-1<x<2}=(-1,2),∴(∁RA)∩B=(-∞,1]∩(-1,2)=(-1,1].
故选:C.

点评 本题考查了交、并、补集的混合运算和对数函数的性质,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.θ是第三象限的角.则(  )
A.cos$\frac{θ}{2}$>0           B.sin$\frac{θ}{2}$>0            C.tan$\frac{θ}{2}$>0            D.cot$\frac{θ}{2}$<0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知等比数列{an}的前n项和为Sn,公比q=3,S3+S4=$\frac{53}{3}$,则a3=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知直线l的参数方程为$\left\{\begin{array}{l}x=1+t\\ y=\sqrt{3}+\sqrt{3}t\end{array}$(t为参数).在以坐标原点O为极点,x轴非负半轴为极轴的极坐标系中,曲线C的极坐标方程为ρ2-4ρcosθ-2$\sqrt{3}$ρsinθ+4=0.
(Ⅰ)求直线l的普通方程和曲线C的直角坐标方程;
(Ⅱ)设直线l与曲线C交于A,B两点,求|OA|•|OB|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知等差数列{an}的前n项和为Sn,且a3=7,S4=24,数列{bn}的前n项和Tn=n2+an
(1)求数列{an},{bn}的通项公式;
(2)求数列$\left\{{\frac{1}{{{b_n}{b_{n+1}}}}}\right\}$的前n项和Bn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.对于下列说法正确的是(  )
A.若f(x)是奇函数,则f(x)是单调函数
B.命题“若x2-x-2=0,则x=1”的逆否命题是“若x≠1,则x2-x-2=0”
C.命题p:?x∈R,2x>1024,则¬p:?x0∈R,${2^{x_0}}<1024$
D.命题“?x∈(-∞,0),2x<x2”是真命题

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知复数z满足$z=\frac{1+2i}{{{{(1-i)}^2}}}$,则在复平面内复数$\overline z$对应的点为(  )
A.$(-1,-\frac{1}{2})$B.$(1,-\frac{1}{2})$C.$(-\frac{1}{2},1)$D.$(-\frac{1}{2},-1)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知实数x、y满足$\left\{\begin{array}{l}1≤x-y≤2\\ 2≤x+y≤4\end{array}\right.$,则z=4x-2y的最大值为(  )
A.3B.5C.10D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知f(x)是R上的奇函数,则“x1+x2=0”是“f(x1)+f(x2)=0”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案