精英家教网 > 高中数学 > 题目详情
6.已知实数x、y满足$\left\{\begin{array}{l}1≤x-y≤2\\ 2≤x+y≤4\end{array}\right.$,则z=4x-2y的最大值为(  )
A.3B.5C.10D.12

分析 作出不等式组对应的平面区域,利用目标函数的几何意义,利用平移法进行求解即可.

解答 解:作出实数x、y满足$\left\{\begin{array}{l}1≤x-y≤2\\ 2≤x+y≤4\end{array}\right.$的可行域,如图:$\left\{\begin{array}{l}{x-y=2}\\{x+y=4}\end{array}\right.$解得A(3,1),
作出直线l:4x-2y=0,平移直线l,当它过点A(3,1)时,z=4x-2y取得最大值10.
故选:C.

点评 本题主要考查线性规划的应用,根据条件结合目标函数的几何意义,利用平移法是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知曲线C的极坐标方程为ρ=6sinθ,以极点O为原点,极轴为x轴的非负半轴建立直角坐标系,直线l的
参数方程为$\left\{\begin{array}{l}x=1+at\\ y=2+t\end{array}\right.$(t为参数).
(1)求曲线C的直角坐标方程及直线l的普通方程;
(2)直线l与曲线C交于B,D两点,当|BD|取到最小值时,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知集合A={x|y=ln(x-1)},B={x|-1<x<2},则(∁RA)∩B=(  )
A.(-1,1)B.(-1,2)C.(-1,1]D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图,已知$\overrightarrow{AB}=a$,$\overrightarrow{AC}=b$,$\overrightarrow{DC}=3\overrightarrow{BD}$,$\overrightarrow{AE}=2\overrightarrow{EC}$,则$\overrightarrow{DE}$=(  )
A.$\frac{3}{4}b-\frac{1}{3}a$B.$\frac{5}{12}a-\frac{3}{4}b$C.$\frac{3}{4}a-\frac{1}{3}b$D.$\frac{5}{12}b-\frac{3}{4}a$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.A、B为两个非空集合,定义集合A-B={x|x∈A且x∉B},若A={-2,-1,0,1,2},B={x|(x-1)(x+2)<0},则A-B=(  )
A.{2}B.{1,2}C.{-2,1,2}D.{-2,-1,0}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.从集合{2,3,4,5}中随机抽取一个数a,从集合{4,6,8}中随机抽取一个数b,则向量$\overrightarrow{m}$=(a,b)与向量$\overrightarrow{n}$=(-2,1)垂直的概率为$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知sin2α=$\frac{1}{4}$,则${sin^2}(α+\frac{π}{4})$=(  )
A.$\frac{3}{4}$B.$\frac{3}{8}$C.$\frac{5}{8}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.某班级为了进行户外拓展游戏,组成红、蓝、黄3个小队.甲、乙两位同学各自等可能地选择其中一个小队,则他们选到同一小队的概率为(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数f(x)=$\left\{\begin{array}{l}\;{2^x},x≤0\\ \;{log_2}x,x\;>\;0.\end{array}$则$f(\frac{1}{4})$=-2;方程f(-x)=$\frac{1}{2}$的解是-$\sqrt{2}$或1.

查看答案和解析>>

同步练习册答案