【题目】如图所示,在斜三棱柱ABC—A1B1C1中,点D,D1分别为AC,A1C1上的点.
(1)当的值等于何值时,BC1∥平面AB1D1;
(2)若平面BC1D∥平面AB1D1,求的值.
【答案】(1)1; (2)1.
【解析】
(1)取为线段的中点,此时=1,连接交于点,连接,在中,点分别为的中点,得,进而证得面.
(2)由已知,平面平面,进而得到和,进而可求解.
(1)如图所示,取D1为线段A1C1的中点,
此时=1,连接A1B交AB1于点O,连接OD1.
由棱柱的性质,知四边形A1ABB1为平行四边形,所以点O为A1B的中点.
在△A1BC1中,点O,D1分别为A1B,A1C1的中点,∴OD1∥BC1.
又∵OD1平面AB1D1,BC1平面AB1D1,
∴BC1∥平面AB1D1.∴时,BC1∥平面AB1D1.
(2)由已知,平面BC1D∥平面AB1D1,且平面A1BC1∩平面BDC1=BC1,
平面A1BC1∩平面AB1D1=D1O,因此BC1∥D1O,同理AD1∥DC1.
∴.又∵,∴,即.
科目:高中数学 来源: 题型:
【题目】圆心在y轴上,半径为1,且过点(1,2)的圆的方程为( )
A.x2+(y﹣2)2=1
B.x2+(y+2)2=1
C.(x﹣1)2+(y﹣3)2=1
D.x2+(y﹣3)2=1
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在一段时间内,分5次测得某种商品的价格x(万元)和需求量y(t)之间的一组数据为:
1 | 2 | 3 | 4 | 5 | |
价格x | 1.4 | 1.6 | 1.8 | 2 | 2.2 |
需求量y | 12 | 10 | 7 | 5 | 3 |
已知,
(1)画出散点图;
(2)求出y对x的线性回归方程;
(3)如价格定为1.9万元,预测需求量大约是多少?(精确到0.01 t).
参考公式: .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,直线的参数方程为(为参数,),以原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)若直线过点,求直线的极坐标方程;
(2)若直线与曲线交于两点,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了及时向群众宣传“十九大”党和国家“乡村振兴”战略,需要寻找一个宣讲站,让群众能在最短的时间内到宣讲站.设有三个乡镇,分别位于一个矩形的两个顶点及的中点处,,,现要在该矩形的区域内(含边界),且与等距离的一点处设一个宣讲站,记点到三个乡镇的距离之和为.
(Ⅰ)设,将表示为的函数;
(Ⅱ)试利用(Ⅰ)的函数关系式确定宣讲站的位置,使宣讲站到三个乡镇的距离之和最小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,;当两条棱平行时,的值为两条棱之间的距离;当两条棱异面时,.
(1)求概率;
(2)求的分布列,并求其数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com