【题目】三角形面积为
,
,
,
为三角形三边长,
为三角形内切圆半径,利用类比推理,可以得出四面体的体积为( )
A. ![]()
B. ![]()
C.
(
为四面体的高)
D.
(其中
,
,
,
分别为四面体四个面的面积,
为四面体内切球的半径,设四面体的内切球的球心为
,则球心
到四个面的距离都是
)
科目:高中数学 来源: 题型:
【题目】心理学家发现视觉和空间能力与性别有关,某数学兴趣小组为了验证这个结论,从兴趣小组中按分层抽样的方法抽取50名同学,给所有同学几何和代数各一题,让各位同学自由选择一道题进行解答,统计情况如下表:(单位:人)
几何题 | 代数题 | 总计 | |
男 同学 | 22 | 8 | 30 |
女同学 | 8 | 12 | 20 |
总计 | 30 | 20 | 50 |
(1)能否据此判断有97.5%的把握认为视觉和空间能力与性别有关?
(2)现从选择几何题的8名女生中任意抽取两人对他们的答题进行研究,记甲、乙两名女生被抽到的人数为
,求
的分布列及数学期望.
附表及公式:
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《九章算术》中,将四个面都为直角三角形的四面体称为鳖臑,如图,在鳖臑
中,
平面
,
,且
,过
点分别作
于点
,
于点
,连接
,则三棱锥
的体积的最大值为__________.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,
地到火车站共有两条路径,据统计两条路径所用的时间互不影响,所用时间在各时间段内的的频率如下表:
时间(分钟) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
![]()
现甲、乙两人分别有
分钟和
分钟时间用于赶往火车站.
(1)为了尽最大可能在各自允许的时间内赶到火车站,甲和乙应如何选择各自的路径?
(2)用
表示甲、乙两人中在允许的时间内赶到火车站的人数,针对(1)的选择方案,求
的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在研究吸烟与患肺癌的关系中,通过收集数据、整理分析数据得“吸烟与患肺癌有关”的结论,并且在犯错误的概率不超过0.01的前提下认为这个结论是成立的,下列说法中正确的是( )
A.100个吸烟者中至少有99人患有肺癌
B.1个人吸烟,那么这个人有99%的概率患有肺癌
C.在100个吸烟者中一定有患肺癌的人
D.在100个吸烟者中可能一个患肺癌的人也没有
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点
是椭圆C:
上的一点,椭圆C的离心率与双曲线
的离心率互为倒数,斜率为
直线l交椭圆C于B,D两点,且A、B、D三点互不重合.
![]()
(1)求椭圆C的方程;
(2)若
分别为直线AB,AD的斜率,求证:
为定值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设
、
分别是椭圆
的左、右焦点.若
是该椭圆上的一个动点,
的最大值为1.
(1)求椭圆
的方程;
(2)设直线
与椭圆
交于
两点,点
关于
轴的对称点为
(
与
不重合),则直线
与
轴是否交于一个定点?若是,请写出定点坐标,并证明你的结论;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四棱锥P-ABCD中,
平面ABCD,
,
,
,
,E为PD的中点,点F在PC上,且
.
![]()
(1)求证:平面
平面PAD;
(2)求二面角F-AE-P的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com