(本小题满分12分)
如图,在四棱锥中,平面平面,∥是正三角形,已知
(1) 设是上的一点,求证:平面平面;
(2) 求四棱锥的体积.
科目:高中数学 来源: 题型:解答题
如图:在多面体EF-ABCD中,四边形ABCD是平行四边形,△EAD为正三角形,且平面EAD平面ABCD,EF∥AB, AB=2EF=2AD=4,.
(Ⅰ)求多面体EF-ABCD的体积;
(Ⅱ)求直线BD与平面BCF所成角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
如图,已知多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AC=AD=CD=DE=2,AB=1,F为CD的中点.
(Ⅰ)求证:AF⊥平面CDE;
(Ⅱ)求面ACD和面BCE所成锐二面角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
如图:在底面为直角梯形的四棱锥P-ABCD中,AD‖BC ,∠ABC=90°,PA⊥平面ABCD, PA="3," AD="2," AB=, BC=6.
(1)求证:BD⊥平面PAC
(2)求二面角B-PC-A的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分l2分)
如图,在多面体ABCDEF中,ABCD为菱形,ABC=60,EC面ABCD,FA面ABCD,G为BF的中点,若EG//面ABCD.
(1)求证:EG面ABF;
(2)若AF=AB,求二面角B—EF—D的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分13分)如图所示,四棱锥中,底面是边长为2的菱形,是棱上的动点.
(Ⅰ)若是的中点,求证://平面;
(Ⅱ)若,求证:;
(III)在(Ⅱ)的条件下,若,求四棱锥的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
已知:如图,在四棱锥中,四边形为正方形,,且,为中点.
(1)证明://平面;
(2)证明:平面平面;
(3)求二面角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
如图:四棱锥P-ABCD中,底面ABCD是平行四边形,∠ACB=90°,PA⊥平面ABCD,PA=BC=1,AB=,F是BC的中点.
(Ⅰ)求证:DA⊥平面PAC;
(Ⅱ)点G为线段PD的中点,证明CG∥平面PAF;
(Ⅲ)求三棱锥A—CDG的体积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com