精英家教网 > 高中数学 > 题目详情
18.已知复数z=$\frac{(1+i)+\sqrt{3}(1-i)}{4+4i}$,求z2+$\frac{1}{z}$的值.

分析 首先化简复数z,然后代入z2+$\frac{1}{z}$计算即可.

解答 解:由已知z=$\frac{(1+i)+\sqrt{3}(1-i)}{4+4i}$=$\frac{(1+i)(1-i)+\sqrt{3}(1-i)^{2}}{4(1+i)(1-i)}$=$\frac{2-2\sqrt{3}i}{8}$=$\frac{1}{4}-\frac{\sqrt{3}}{4}i$,
所以z2+$\frac{1}{z}$=($\frac{1}{4}-\frac{\sqrt{3}}{4}i$)2+$\frac{1}{\frac{1}{4}-\frac{\sqrt{3}}{4}i}$=-$\frac{1}{8}$-$\frac{\sqrt{3}}{8}i$+1+$\sqrt{3}$i=$\frac{7}{8}$+$\frac{7\sqrt{3}}{8}$i.

点评 本题考查了复数的运算;对于发生的除法运算,一般要分母实数化.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知△ABC中,B(-6,0),C(0,8),且sinB,sinA,sinC成等差数列,已知顶点A在一个椭圆上运动,求椭圆的焦点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知点A(0,4),点P在直线x-2y=0上运动.以线段AP为直径作一个圆,求该圆恒过的定点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.计算:23+log2$\sqrt{8}$=$\frac{19}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知f(x)=$\frac{x}{{e}^{x}}$,f1(x)=f′(x),f2(x)=[f1(x)]′,…,fn+1(x)=[fn(x)]′,n∈N*,经计算:f1(x)=$\frac{1-x}{{e}^{x}}$,f2(x)=$\frac{x-2}{{e}^{x}}$,f3(x)=$\frac{3-x}{{e}^{x}}$,…,照此规律f2015(x)=$\frac{2015-x}{{e}^{x}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知tan($\frac{π}{4}$+α)=-3,则sin2α-3sinαcosα+1的值为$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设x,y满足约束条件$\left\{\begin{array}{l}{2x-y+2≥0}\\{8x-y-4≤0}\\{x≥0,y≥0}\end{array}\right.$,若目标函数z=abx+y(a>0,b>0)的最大值为5,则a+b的最小值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求导:y=e-x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设集合A={(x,y)||x|+|y|≤1},B={(x,y)|(y-x)(y+x)≤0},M=A∩B,若动点P(x,y)∈M,则x2+(y-1)2的取值范围是[$\frac{1}{2},\frac{5}{2}$].

查看答案和解析>>

同步练习册答案