精英家教网 > 高中数学 > 题目详情
13.已知f(x)=$\frac{x}{{e}^{x}}$,f1(x)=f′(x),f2(x)=[f1(x)]′,…,fn+1(x)=[fn(x)]′,n∈N*,经计算:f1(x)=$\frac{1-x}{{e}^{x}}$,f2(x)=$\frac{x-2}{{e}^{x}}$,f3(x)=$\frac{3-x}{{e}^{x}}$,…,照此规律f2015(x)=$\frac{2015-x}{{e}^{x}}$.

分析 由已知中定义f1(x)=f′(x),f2(x)=[f1(x)]′,…,fn+1(x)=[fn(x)]′,n∈N*.结合f1(x)=$\frac{1-x}{{e}^{x}}$,f2(x)=$\frac{x-2}{{e}^{x}}$,f3(x)=$\frac{3-x}{{e}^{x}}$,…,分析出fn(x)解析式随n变化的规律,可得答案.

解答 解:∵f1(x)=$\frac{1-x}{{e}^{x}}$=$\frac{(-1)^{1}(x-1)}{{e}^{x}}$,f2(x)=$\frac{x-2}{{e}^{x}}$=$\frac{(-1)^{2}(x-2)}{{e}^{x}}$,f3(x)=$\frac{3-x}{{e}^{x}}$=$\frac{(-1)^{3}(x-3)}{{e}^{x}}$,…,
由此归纳可得:fn(x)=$\frac{(-1)^{n}(x-n)}{{e}^{x}}$;
所以f2015(x)=$\frac{2015-x}{{e}^{x}}$;
故答案为:.$\frac{2015-x}{{e}^{x}}$.

点评 本题考查了函数求导以及归纳推理;归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.对于任意两个集合A,B,关系(A∩B)⊆(A∪B)总成立吗?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知奇函数f(x)是定义在(-2,2)上的单调递减函数,当f(2-a)+f(2a-3)<0时,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.现有长度为2.4米和5.6米两种规格的钢筋若干,要焊接一批正方体模型,问怎样设计才能保证正方体体积最大且使用材料最省.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求函数y=lg[$\sqrt{3}$-($\sqrt{3}$-1)tanx-tan2x]+$\sqrt{9-{x}^{2}}$的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知复数z=$\frac{(1+i)+\sqrt{3}(1-i)}{4+4i}$,求z2+$\frac{1}{z}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.10只灯泡中有n只不合格品,从中任取4只,记恰有两只不合格品的概率为f(n),则当f(n)取最大值时,n=5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.“A•B<0”是“方程Ax2+By2+Dx+Ey+C=0表示双曲线”的(  )
A.充分但非必要条件B.必要但非充分条件
C.充要条件D.不充分也非必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知f(x)是偶函数,g(x)是奇函数,且f(x)+g(x)=$\frac{1}{x-1}$,求f(x),g(x)的解析式.

查看答案和解析>>

同步练习册答案