精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x2+
2
x
+alnx(a∈R).
(1)当a=0时,求f(x)的极值点;
(2)若f(x)在[1,+∞)上单调递增,求a的取值范围;
(3)若定义在区间D上的函数y=f(x)对于区间D上的任意两个值x1,x2总有以下不等式
1
2
[f(x1)+f(x2)]≥f(
x1+x2
2
)成立,则函数y=f(x)为区间D上的“下凸函数”.试证当a≤0时,f(x)为“下凸函数”.
考点:利用导数求闭区间上函数的最值,利用导数研究函数的单调性,利用导数研究函数的极值
专题:计算题,证明题,新定义,导数的综合应用
分析:(1)求出a=0时,f(x)的表达式,求导,得到单调区间,从而说明极值点;
(2)求f(x)的导数,f(x)在[1,+∞)上单调递增等价为f′(x)≥0在[1,+∞)上恒成立,
即有a≥
2
x
-2x2
在[1,+∞)上恒成立,令g(x)=
2
x
-2x2
,运用导数求出g(x)的最大值,只要a不小于它即可;
(3)由新定义知,可化简f(
x1+x2
2
)-
1
2
[f(x1)+f(x2)],注意运用两数的差的平方公式和基本不等式,结合条件即可得证.
解答: (1)解:a=0时,f(x)=x2+
2
x
(x>0)
f′(x)=2x-
2
x2
,令f′(x)=0,则x=1,
当0<x<1时,f′(x)<0,f(x)递减;当x>1时,f′(x)>0,f(x)递增,
则x=1为f(x)的极值点.
(2)解:f′(x)=2x-
2
x2
+
a
x
(x≥1),
由f(x)在[1,+∞)上单调递增,f′(x)≥0在[1,+∞)上恒成立,
即2x3-2+ax≥0在[1,+∞)上恒成立,即有a≥
2
x
-2x2
在[1,+∞)上恒成立,
令g(x)=
2
x
-2x2
,g′(x)=-
2
x2
-4x<0,在[1,+∞)上恒成立,即g(x)在[1,+∞)上递减,
则g(x)的最大值为g(1)=0,
故a的取值范围是[0,+∞).
(3)证明:f(
x1+x2
2
)-
1
2
[f(x1)+f(x2)]
=(
x1+x2
2
2+
4
x1+x2
+aln(
x1+x2
2
)-
1
2
(x12+
2
x1
+x22+
2
x2
+alnx1+alnx2
=-
1
4
(x1-x22+a(ln
x1+x2
2
-ln
x1x2
)+
-(x1-x2)2
(x1+x2)x1x2

由于a≤0,x1>0,x2>0,(x1-x22≥0,
x1+x2
2
x1x2

则a(ln
x1+x2
2
-ln
x1x2
)≤0,
故f(
x1+x2
2
)-
1
2
[f(x1)+f(x2)]≤0,
即由定义可知:当a≤0时,f(x)为“下凸函数”.
点评:本题考查导数的综合运用:求单调区间、求极值和最值,考查不等式的恒成立问题转化为求最值,同时考查运用新定义证明问题,是一道中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列对应法则中,能建立从集合A={1,2,3,4,5}到集合B={0,3,8,15,24}的映射的是(  )
A、f:x→x2-x
B、f:x→x+(x-1)2
C、f:x→x2+x
D、f:x→x2-1

查看答案和解析>>

科目:高中数学 来源: 题型:

下列集合中,表示同一集合的是(  )
A、M={(3,2)},N={(2,3)}
B、M={3,2},N={(3,2)}
C、M={(x,y)|x+y=1},N={y|x+y=1}
D、M={3,2},N={2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和为Sn,4Sn=an2+2an且an>0,又点(an,bn)在函数f(x)=2x的图象上(其中n∈N*).
(1)求数列{an},{bn}的通项公式;
(2)设cn=an•sin2
2
)-bn•cos2
2
)(n∈N*),求数列{cn}的前2n项和T2n

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x
ex
+m,m∈R.
(Ⅰ)当m=0时,求f(x)的单调区间、最大值;
(Ⅱ)设函数g(x)=|lnx|-f(x),若存在实数x0使得g(x0)<0,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和为Sn,且满足an=2-Sn(n∈N*).
(Ⅰ)求a1,a2,a3,a4的值并写出其通项公式;
(Ⅱ)设bn=nan,求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

要从两名同学中挑出一名,代表班级参加射击比赛,根据以往的成绩记录同学甲击中目标的环数为X1的分布列为
X15678910
P0.030.090.200.310.270.10
同学乙击目标的环数X2的分布列为
X256789
P0.010.050.200.410.33
(1)请你评价两位同学的射击水平(用数据作依据);
(2)如果其它班参加选手成绩都在9环左右,本班应派哪一位选手参赛,如果其它班参赛选手的成绩都在7环左右呢?

查看答案和解析>>

科目:高中数学 来源: 题型:

若0≤x≤2,求函数y=4 x-
1
2
-3×2x+5的最大值和最小值及相应的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=(
1
2
ax,a为常数,且函数的图象过点(-1,2)
(1)求a的值
(2)求f(x)的反函数h(x);
(3)若g(x)=4-x-2且g(x)=f(x),求满足条件的x值.

查看答案和解析>>

同步练习册答案