精英家教网 > 高中数学 > 题目详情
随机对110名性别不同的跳舞爱好者就喜欢跳广场舞还是喜欢跳街舞进行抽样调查,得到如下列联表
总计
跳街舞50yn
跳广场舞x20m
总计60ze
(1)根据以上表格,写出x,y,z,e,m,n的值;
(2)是否有99%的把握认为喜欢跳广场舞还是喜欢跳街舞与性别有关系.
注:如表的临界值表供参考
P(Χ2≥k)0.100.050.0250.010
k2.7063.8415.0246.635
(参考公式:X2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d)
考点:独立性检验的应用
专题:应用题,概率与统计
分析:(1)利用表格,可以写出x,y,z,e,m,n的值;
(2)把列联表中的数据代入求观测值的公式,求出这组数据的观测值,把观测值同临界值进行比较,得到有99%的把握认为喜欢跳广场舞还是喜欢跳街舞与性别有关系.
解答: 解:(1)x=10,y=30,z=50,e=110,m=30,n=80…(6分)
(2)根据题中的列联表得Χ=
110(50×20-30×10)2
80×30×60×50
=
539
72
≈7.486>6.635
…(10分)
∴有99%的把握认为喜欢跳广场舞还是喜欢跳街舞与性别有关系…(12分)
点评:本题考查独立性检验的应用,本题解题的关键是正确理解临界值对应的概率的意义,本题是一个基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知O为坐标原点,向量
OA
=(sinα,1),
OB
=(cosα,0),
OC
=(-sinα,2),点P是直线AB上的一点,且
AB
=
BP

(1)求点P的坐标(用α表示);
(2)若O,P,C三点共线,求以线段OA,OB为邻边的平行四边形的对角线长;
(3)(文科)记函数f(α)=
BP
CA
,且f(
θ
2
)=
3
2
5
,求sin2θ的值.
(3)(理科)记函数f(α)=
BP
CA
,α∈(-
π
8
π
2
),讨论函数f(α)的单调性,并求其值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=-x3+x2(x∈R),g(x)满足g′(x)=
a
x
(a∈R,x>0),且g(e)=a,e为自然对数的底数.
(Ⅰ)已知h(x)=e1-xf(x),求h(x)在(1,h(1))处的切线方程;
(Ⅱ)若存在x∈[1,e],使得g(x)≥-x2+(a+2)x成立,求a的取值范围;
(Ⅲ)设函数F(x)=
f(x),x<1
g(x),x≥1
,O为坐标原点,若对于y=F(x)在x≤-1时的图象上的任一点P,在曲线y=F(x)(x∈R)上总存在一点Q,使得
OP
OQ
<0,且PQ的中点在y轴上,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
ax2-(2a+1)x+2lnx,其中常数a>0.
(1)求f(x)的单调区间;
(2)如果函数f(x),H(x),g(x)在公共定义域D上,满足f(x)<H(x)<g(x),那么就称H(x) 为f(x)与g(x)的“和谐函数”.设g(x)=x2-4x,求证:当2<a<
5
2
时,在区间(0,2]上,函数f(x)与g(x)的“和谐函数”有无穷多个.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=
e1
+
e2
b
=4
e1
+3
e2
,其中
e1
=(1,0),
e2
=(0,1),
(1)试计算
a
b
及|
a
+
b
|的值;
(2)求向量
a
b
的夹角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图:在二面角α-l-β中,A、B∈α,C、D∈l,ABCD为矩形,p∈β,PA⊥α且PA=AD,M、N依次是AB、PC的中点,
(1)求二面角α-l-β的大小.
(2)求异面直线MN与l所成的角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

复数z=(3m-2)+(m-1)i,m∈R.
(1)m为何值时,z是纯虚数?
(2)若(
x
+
3
x
m(m∈N*)的展开式中,各项系数的和与其各项二项式系数和之比为64,求n的值并指出此时复数z在复平面上对应的点位于第几象限.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an},a1=
1
2
,an+1-an=
1
(2n)2-1
,写出数列的前四项,并归纳出通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

某台小型晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在第四位、节目乙不能排在第一位,节目丙必须排在最后一位,该台晚会节目演出顺序的编排方案共有
 
种.

查看答案和解析>>

同步练习册答案