精英家教网 > 高中数学 > 题目详情
已知向量
a
=
e1
+
e2
b
=4
e1
+3
e2
,其中
e1
=(1,0),
e2
=(0,1),
(1)试计算
a
b
及|
a
+
b
|的值;
(2)求向量
a
b
的夹角的正弦值.
考点:平面向量数量积的运算
专题:平面向量及应用
分析:(1)利用向量的坐标运算和数量积的坐标运算即可得出;
(2)利用向量的夹角公式和同角三角函数的平方关系式即可得出.
解答: 解:(1)∵向量
a
=
e1
+
e2
b
=4
e1
+3
e2
,其中
e1
=(1,0),
e2
=(0,1),
a
=(1,0)+(0,1)=(1,1),
b
=4(1,0)+3(0,1)=(4,3),
a
b
=4×1+3×1=7,
a
+
b
=(5,4),
∴|
a
+
b
|=
52+42
=
41

(2)∵cos<
a
b
=
a
b
|
a
| |
b
|
=
7
2
×5
=
7
2
10

sin<
a
b
=
1-(
7
2
10
)2
=
2
10
点评:本题考查了向量的坐标运算和数量积的坐标运算、向量的夹角公式、同角三角函数的平方关系式,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(ωx+ϕ)(A>0,ω>0,0<ϕ<π)的图象如图所示.
(1)求该函数的解析式;      
(2)若g(x)=f(x-
π
8
),判断g(x)的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2sin(2x-
π
6
)-a+2(其中a为常数).
(1)求f(x)的单调区间;
(2)若x∈[0,
π
2
]时,f(x)的最大值为3,求a的值;
(3)求出使f(x)取最大值时x取值的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=x2,-2≤x≤a,其中a≥-2,求该函数的最大值与最小值,并求出函数取最大值和最小值时所对应的自变量x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
mx2-4mx+1
的定义域为R,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

随机对110名性别不同的跳舞爱好者就喜欢跳广场舞还是喜欢跳街舞进行抽样调查,得到如下列联表
总计
跳街舞50yn
跳广场舞x20m
总计60ze
(1)根据以上表格,写出x,y,z,e,m,n的值;
(2)是否有99%的把握认为喜欢跳广场舞还是喜欢跳街舞与性别有关系.
注:如表的临界值表供参考
P(Χ2≥k)0.100.050.0250.010
k2.7063.8415.0246.635
(参考公式:X2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在多面体ABCDEF中,底面ABCD是边长为2的正方形,四边形BDEF是矩形,平面BDEF⊥平面ABCD,BF=3,G,H分别是CE和CF的中点.
(1)求证:AF∥平面BDGH:
(2)求VE-BFH

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在锐角△ABC中,a,b,c分别为∠A,∠B,∠C的对边,且c=2,∠C=60°,求a+b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,AB=4,AC=3,∠A=60°,D是AB的中点,则
CA
CD
=
 

查看答案和解析>>

同步练习册答案