精英家教网 > 高中数学 > 题目详情
11.已知向量$\overrightarrow{m}$=(cos$\frac{x}{2}$-1),$\overrightarrow{n}$=($\sqrt{3}$sin$\frac{x}{2}$,cos2$\frac{x}{2}$),函数f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$+1.
(Ⅰ)若x∈[$\frac{π}{2}$,π],求f(x)的最小值及对应的x的值;
(Ⅱ)若x∈[0,$\frac{π}{2}$],f(x)=$\frac{11}{10}$,求sinx的值.

分析 (I)利用两个向量的数量积公式,三角恒等变换化简函数的解析式,再利用正弦函数的定义域和值域求得f(x)的最小值及对应的x的值.
(II)由条件求得sin(x-$\frac{π}{6}$),再利用同角三角函数的基本关求得cos(x-$\frac{π}{6}$)的值,利用两角和的正弦公式求得sinx=sin[(x-$\frac{π}{6}$)+$\frac{π}{6}$]的值.

解答 解:(I)由题意f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$+1=$\sqrt{3}$sin$\frac{x}{2}$•cos$\frac{x}{2}$-cos2$\frac{x}{2}$+1
=$\frac{{\sqrt{3}}}{2}sinx-\frac{1+cosx}{2}+1=\frac{{\sqrt{3}}}{2}sinx-\frac{1}{2}cosx+\frac{1}{2}$=$sin({x-\frac{π}{6}})+\frac{1}{2}$,
∵$x∈[{\frac{π}{2},π}]$,∴$\frac{π}{3}≤x-\frac{π}{6}≤\frac{5}{6}π$,∴$x-\frac{π}{6}=\frac{5}{6}π$,
即x=π时,f(x)min=1.
(II)$f(x)=\frac{11}{10}$,即$sin({x-\frac{π}{6}})+\frac{1}{2}=\frac{11}{10}$,得$sin({x-\frac{π}{6}})=\frac{3}{5}$.
∵$0≤x≤\frac{π}{2}$,∴$-\frac{π}{6}≤x-\frac{π}{6}≤\frac{π}{3}$,∴$cos({x-\frac{π}{6}})=\frac{4}{5}$,
∴$sinx=sin({x-\frac{π}{6}+\frac{π}{6}})=sin({x-\frac{π}{6}})•\frac{{\sqrt{3}}}{2}+cos({x-\frac{π}{6}})•\frac{1}{2}$ 
=$\frac{3}{5}×\frac{{\sqrt{3}}}{2}+\frac{4}{5}×\frac{1}{2}=\frac{{3\sqrt{3}+4}}{10}$.

点评 本题主要考查两个向量的数量积公式,三角恒等变换,正弦函数的定义域和值域,同角三角函数的基本关系,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.若m∈(0,1),a=3m,b=log3m,c=m3则用“>”将a,b,c按从大到小可排列为a>c>b.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=x-$\frac{1}{x}$,
(1)判断函数f(x)的奇偶性;
(2)证明:f(x)在(0,+∞)上为单调增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=$\left\{\begin{array}{l}{|x|,x≤m}\\{{x}^{2}-2mx+4m,x>m}\end{array}\right.$,其中m>0,若存在实数b,使得关于x的方程f(x)=b,有三个不同的根,则m的取值范围是(  )
A.(0,$\frac{1}{2}$)B.($\frac{1}{2}$,+∞)C.($\frac{1}{3}$,1)D.(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数fM(x)的定义域为实数集R,满足fM(x)=$\left\{\begin{array}{l}1,x∈M\\ 0,x∉M\end{array}$(M是R的非空真子集),在R上有两个非空真子集A,B,且A∩B=∅,则F(x)=$\frac{{{f_{A∪B}}(x)+1}}{{{f_A}(x)+{f_B}(B)+1}}$的值域为{1}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知等差数列{an}满足:a5=9,a1+a7=14.
(1)求数列{an}的通项公式;
(2)若bn=an+3n,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知2k是k与k+3的等比中项,则k等于1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若数列{an}的通项公式是an=(-1)n•(3n-2),则a1+a2+a3+…+a30=(  )
A.45B.-45C.1335D.-1335

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知集合A={-1,3,m2},B={3,2m-1},若B⊆A,则m=0或1.

查看答案和解析>>

同步练习册答案