精英家教网 > 高中数学 > 题目详情
6.已知函数fM(x)的定义域为实数集R,满足fM(x)=$\left\{\begin{array}{l}1,x∈M\\ 0,x∉M\end{array}$(M是R的非空真子集),在R上有两个非空真子集A,B,且A∩B=∅,则F(x)=$\frac{{{f_{A∪B}}(x)+1}}{{{f_A}(x)+{f_B}(B)+1}}$的值域为{1}.

分析 对F(x)中的x属于什么集合进行分类讨论,利用题中新定义的函数求出f(x)的函数值,从而得到F(x)的值域即可.

解答 解:当x∈CR(A∪B)时,fA∪B(x)=0,fA(x)=0,fB(x)=0,∴F(x)=1,
同理得:当x∈B时,F(x)=1;
当x∈A时,F(x)=1,
故F(x)=$\left\{\begin{array}{l}{1,x∈A}\\{1,x∈B}\\{1,x∈{C}_{R}(A∪B)}\end{array}\right.$,即值域为{1},
故答案为:{1}.

点评 本题主要考查了函数的值域、分段函数,解答关键是对于新定义的正确理解,属于创新型题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.在△ABC中,角A、B、C的对边分别为a、b、c,若acosB+bcosA=csinA,则△ABC的形状为(  )
A.直角三角形B.钝角三角形C.锐角三角形D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.函数f(x)=x2-2ax+2在(-∞,6)内递减,则a的取值范围为[6,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列函数中与函数y=x相等的函数是(  )
A.y=log22xB.y=$\sqrt{{x}^{2}}$C.y=2${\;}^{lo{g}_{2}x}$D.y=($\sqrt{x}$)2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.(Ⅰ)(0.064)${\;}^{{-}^{\frac{1}{3}}}$-(-$\frac{7}{8}$)0+[(-2)3]${\;}^{-\frac{4}{3}}$+(16)-0.75
(Ⅱ)log3$\sqrt{27}$+lg25+lg4+7${\;}^{lo{g}_{7}2}$+(-9.8)0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知向量$\overrightarrow{m}$=(cos$\frac{x}{2}$-1),$\overrightarrow{n}$=($\sqrt{3}$sin$\frac{x}{2}$,cos2$\frac{x}{2}$),函数f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$+1.
(Ⅰ)若x∈[$\frac{π}{2}$,π],求f(x)的最小值及对应的x的值;
(Ⅱ)若x∈[0,$\frac{π}{2}$],f(x)=$\frac{11}{10}$,求sinx的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知等差数列{an},{bn}的前n项和为Sn,Tn,若对于任意的自然数n,都有$\frac{{S}_{n}}{{T}_{n}}$=$\frac{2n-3}{4n-1}$,则$\frac{{a}_{3}+{a}_{15}}{2({b}_{3}+{b}_{9})}$+$\frac{{a}_{3}}{{b}_{2}+{b}_{10}}$=(  )
A.$\frac{19}{43}$B.$\frac{17}{40}$C.$\frac{9}{20}$D.$\frac{27}{50}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,有一壁画,最高点A处离地面AO=4m,最低点B处离地面BO=2m,观赏它的C点在过墙角O点与地面成30°角的射线上.
(1)设点C到墙的距离为x,当x=$\sqrt{3}$m时,求tanθ的值;
(2)问C点离墙多远时,视角θ最大?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知集合A={0,1,2,3,4,6,7},集合B={1,2,4,8,0},则A∩B=(  )
A.{1,2,4,0}B.{2,4,8}C.{1,2,8}D.{1,2,9}

查看答案和解析>>

同步练习册答案