分析 (1)由曲线y=f(x)过点P(1,-1),可得-1=ln1-m,解得m,再利用导数的几何意义可得切线的斜率,利用点斜式可得切线方程.
(2)f(x)≤0恒成立,即lnx-mx≤0恒成立,可得mx≥lnx.又f(x)定义域为(0,+∞),可得$m≥\frac{lnx}{x}$恒成立.设$g(x)=\frac{lnx}{x}$,利用导数研究其单调性极值与最值,即可得出.
(3)$f'(x)=\frac{1}{x}-m=\frac{1-mx}{x}$.对m分类讨论,利用导数研究函数的单调性即可得出最值.
解答 解:(1)∵曲线y=f(x)过点P(1,-1),∴-1=ln1-m,解得m=1.
∴f(x)=lnx-x,f′(x)=$\frac{1}{x}$-1,
f′(1)=0,
∴过点P(1,-1)的切线方程为y=-1.
(2)∵f(x)≤0恒成立,即lnx-mx≤0恒成立,∴mx≥lnx.
又∵f(x)定义域为(0,+∞),∴$m≥\frac{lnx}{x}$恒成立.
设$g(x)=\frac{lnx}{x}$,∵$g'(x)=\frac{1-lnx}{x^2}$,
∴当x=e时,g'(e)=0.
当0<x<e时,g'(x)>0,g(x)为单调增函数;
当x>e时,g'(x)<0,g(x)为单调减函数.
∴$g{(x)_{max}}=g(e)=\frac{1}{e}$,
∴当$m≥\frac{1}{e}$时,f(x)≤0恒成立.
(3)∵$f'(x)=\frac{1}{x}-m=\frac{1-mx}{x}$.
①当m≤0时,f'(x)>0,
∴f(x)在(0,+∞)为单增函数,∵在x∈[1,e]上,f(x)max=f(e)=1-me.
②当$\frac{1}{e}<m<1$时,即$1<\frac{1}{m}<e$时,$x∈(0,\frac{1}{m})$时,f'(x)>0,f(x)为单增函数.
$x∈(\frac{1}{m},+∞)$时,f'(x)<0,f(x)为单减函数.
∴x∈[1,e]上,$f{(x)_{max}}=f(\frac{1}{m})=-lnm-1$.
③当m≥1时,$0<\frac{1}{m}≤1$,f(x)在$(\frac{1}{m},+∞)$为单减函数,
∴x∈[1,e]上,f(x)max=f(1)=-m.
④当$0<m≤\frac{1}{e}$时,$\frac{1}{m}$≥e,f(x)在$(0,\frac{1}{m})$为单增函数,
∴x∈[1,e]上,f(x)max=f(e)=1-me.
综上所述:$m≤\frac{1}{e}$时,f(x)max=f(e)=1-me.
当$\frac{1}{e}<m<1$时,$f{(x)_{max}}=f(\frac{1}{m})=-lnm-1$.
当m≥1时,x∈[1,e]上,f(x)max=f(1)=-m.
点评 本题考查了利用导数研究函数的单调性极值、解不等式、导数的几何意义,考查了分类讨论方法、推理能力与计算能力,属于难题.
科目:高中数学 来源:2016-2017学年安徽六安一中高一上国庆作业二数学试卷(解析版) 题型:解答题
已知定义域为
的函数
是奇函数.
(1)求
的值;
(2)用定义证明
在
上是单调递减函数;
(3)若对任意
,不等式
恒成立,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{3}$ | B. | 1 | C. | 4 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{4}$ | B. | $\frac{π}{3}$ | C. | $\frac{3π}{4}$ | D. | $\frac{2π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{4}$ | B. | $\frac{3}{8}$ | C. | $\frac{1}{2}$ | D. | $\frac{5}{8}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com