精英家教网 > 高中数学 > 题目详情
16.已知抛物线C的焦点在x轴正半轴上且顶点在原点,若抛物线C上一点(2,m)到焦点的距离是$\frac{5}{2}$,则抛物线C的方程为y2=2x.

分析 设抛物线的方程为y2=2px(p>0),求得准线方程,由抛物线的定义,可得到焦点的距离即为到准线的距离,解p的方程,即可求得p=1,进而得到抛物线方程.

解答 解:设抛物线的方程为y2=2px(p>0),
抛物线的准线方程为x=-$\frac{p}{2}$,
由抛物线的定义可得,2+$\frac{p}{2}$=$\frac{5}{2}$,
解得p=1.
即有抛物线的方程为y2=2x.

点评 本题考查抛物线的定义、方程和性质,主要考查抛物线的定义的运用,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知在△ABC中,∠A、∠B、∠C的对边分别为a、b、c,且∠A:∠B:∠C=1:2:6,求证:$\frac{a}{b}$=$\frac{a+b}{a+b+c}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=$\frac{1}{2}$x2-(1+a)x+alnx,
(1)当a=3时,求函数f(x)的极值点;
(2)当a>0时,若方程f(x)=t恰有三个不同的根,试求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=lnx-$\frac{1}{2}{x^2}$-ax(a∈R),在x=1时取得极值.
(Ⅰ)求f(x)的单调区间;
(Ⅱ)若方程f(x)=-$\frac{3}{2}$x+b在区间[1,3]上有两个不等实数根,求实数b取值范围.
(Ⅲ)若函数h(x)=f(x)-x2,利用h(x)的图象性质,证明:3(12+22+…+n2)>ln(12•22•…•n2)(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设函数f(x)是定义在R上的可导函数,且当x≠0时,f′(x)+$\frac{f(x)}{x}$>0,则关于x的函数g(x)=f(x)+$\frac{1}{x}$的零点个数为(  )
A.1B.2C.0D.0或2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知抛物线C的焦点在x轴正半轴上且顶点在原点,若抛物线C上一点(m,2)(m>1)到焦点的距离是$\frac{5}{2}$,则抛物线C的方程为y2=2x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.抛物线y2=16x的准线方程为(  )
A.y=4B.y=-4C.x=-4D.x=4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}满足a1=$\frac{1}{3}$,a2=1,且[2+(-1)n+1]an+2=an+(-1)n+1(n∈N*),设bn=a2n-1,cn=a2n
(1)求数列{bn}和{cn}的通项公式;
(2)令dn=bn•cn,记数列{dn}的前n项和为Tn,求证Tn<1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知△ABC中∠A、∠B、∠C的对边分别为a,b,c,若cos2($\frac{π}{2}$+A)+cosA=$\frac{5}{4}$,b+c=$\sqrt{3}$a,求∠A,∠B,∠C的大小.

查看答案和解析>>

同步练习册答案