分析 (1))由条件利用正弦函数的周期性求得f(x)的最小正周期,利用两角和的正弦公式求得f($\frac{π}{8}$)=2sin($\frac{π}{4}$+$\frac{π}{6}$)的值.
(2)由条件利用正弦函数的定义域和值域,求得f(x)的最值.
解答 解:(1)函数f(x)=2sin(2x+$\frac{π}{6}$)的最小正周期为$\frac{2π}{2}$=π,
f($\frac{π}{8}$)=2sin($\frac{π}{4}$+$\frac{π}{6}$)=2sin$\frac{π}{4}$cos$\frac{π}{6}$+2cos$\frac{π}{4}$sin$\frac{π}{6}$=2•$\frac{\sqrt{2}}{2}$•$\frac{\sqrt{3}}{2}$+2•$\frac{\sqrt{2}}{2}$•$\frac{1}{2}$=$\frac{\sqrt{6}+\sqrt{2}}{2}$.
(2)∵x∈[-$\frac{π}{6}$,$\frac{π}{3}$],∴2x+$\frac{π}{6}$∈[-$\frac{π}{6}$,$\frac{5π}{6}$],
∴当2x+$\frac{π}{6}$=-$\frac{π}{6}$时,f(x)=2sin(2x+$\frac{π}{6}$)取得最小值为-1;
∴当2x+$\frac{π}{6}$=$\frac{π}{2}$时,f(x)=2sin(2x+$\frac{π}{6}$)取得最大值为2.
点评 本题主要考查正弦函数的周期性,两角和的正弦公式,正弦函数的定义域和值域,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{3}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | p∧q | B. | p∨(¬q) | C. | (¬p)∧(¬q) | D. | (¬p)∧q |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com