精英家教网 > 高中数学 > 题目详情
17.已知函数$f(x)=\left\{\begin{array}{l}x(x+4),x≥0\\ x(x-4),x<0\end{array}\right.$,则f(-3)=(  )
A.-3B.21C.3D.-21

分析 由x=-3<0,得f(-3)=(-3)(-3-4),由此能求出f(-3)的值.

解答 解:∵函数$f(x)=\left\{\begin{array}{l}x(x+4),x≥0\\ x(x-4),x<0\end{array}\right.$,
∴f(-3)=(-3)(-3-4)=21.
故选:B.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知集合A={x∈N|1<x<lnk},集合A中至少有3个元素,则(  )
A.k>e3B.k≥e3C.k>e4D.k≥e4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知a>0,b>0,且a+2b=$\frac{4}{a}$+$\frac{2}{b}$
(1)证明a+2b≥4;
(2)若(a-1)(b-1)>0,求$\frac{1}{lo{g}_{2}a}$+$\frac{3}{lo{g}_{2}b}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}是等差数列,Sn是其前n项和,a1=2,S3=12.
(1)求数列{an}的通项公式; 
(2)设bn=an+4n,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在△ABC中,角A,B,C所对的边分别为a,b,c,若ac=$\frac{1}{4}$b2,sin A+sin C=psin B,且B为锐角,则实数p的取值范围是(  )
A.(1,$\sqrt{2}$)B.($\frac{\sqrt{6}}{2}$,$\sqrt{2}$)C.($\frac{\sqrt{6}}{2}$,$\sqrt{3}$)D.(1,$\sqrt{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=2lnx-x2
(1)讨论f(x)的单调性并求最大值;
(2)设g(x)=xex-(a-1)x2-x-2lnx,若f(x)+g(x)≥0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.平面直角坐标系中,在由x轴、x=$\frac{π}{3}$、x=$\frac{5π}{3}$和y=2所围成的矩形中任取一点,满足不等关系y≤1-sin3x的概率是(  )
A.$\frac{4π}{3}$B.$\frac{π}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知△ABC是边长为$2\sqrt{3}$的正三角形,EF为△ABC的外接圆O的一条直径,M为△ABC的边上的动点,则$\overrightarrow{ME}•\overrightarrow{FM}$的最大值为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知集合A={x|(x-3)(x+1)<0},B={x|x>1},则A∩B=(  )
A.{x|x>3}B.{x|x>1}C.{x|-1<x<3}D.{x|1<x<3}

查看答案和解析>>

同步练习册答案