分析 (1)将已知条件转化为首项和公差表示,解方程组可求得基本量的值,从而确定通项公式;
(2)首先化简数列{bn}的通项公式,结合特点采用分组求和法求解.
解答 解:(1)∵a1=2,S3=12.
∴3×2+3d=12,解得d=2.
∴an=2+2(n-1)=2n.
(2)∵${b_n}={a_n}+{4^n}=2n+{4^n}$,
Tn=2(1+2+…+n)+(4+42+…+4n)
=$2×\frac{n(1+n)}{2}$+$\frac{4({4}^{n}-1)}{4-1}$
=n2+n+$\frac{{4}^{n+1}-4}{3}$.
点评 本题考查了等差数列与等比数列的通项公式与求和公式、分组求和方法,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | [-4,5] | B. | [-5,5] | C. | [4,5] | D. | [-5,4] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 4 | C. | 5 | D. | 6 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -3 | B. | 21 | C. | 3 | D. | -21 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $[\frac{1}{14},\frac{1}{3})$ | B. | $(\frac{1}{14},\frac{1}{3}]$ | C. | $(\frac{1}{3},2]$ | D. | $[\frac{1}{3},2)$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | -$\frac{\sqrt{3}}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com