精英家教网 > 高中数学 > 题目详情
9.在△ABC中,b=3,c=6,B=45°,则此三角形解的情况是(  )
A.一解B.两解C.一解或两解D.无解

分析 由csinB>b,即可得出解的情况.

解答 解:过点A作AD⊥BD.点D在∠B的一条边上,
∵h=csinB=6×$\frac{\sqrt{2}}{2}$=3$\sqrt{2}$>3=b=AC,
因此此三角形无解.
故选:D.

点评 本题考查了正弦定理解三角形,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.方程ex-x-6=0的一个根所在的区间为(  )
A.(-1,0)B.(0,1)C.(1,2)D.(2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的右焦点F(c,0),O为坐标原点,以F为圆心,OF为半径的圆与该双曲线的交点的横坐标为$\frac{c}{2}$,则该双曲线的离心率为(  )
A.$\sqrt{2}$B.$\frac{{1+\sqrt{3}}}{2}$C.2D.$\sqrt{3}+1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=$\left\{\begin{array}{l}2x+1\\ f(x-3)\end{array}$$\begin{array}{l},x≤0\\,x>0\end{array}$,则f(2017)等于(  )
A.-1B.1C.-3D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数f(x)=ln(x+1)-mx在区间(0,1)恒为增函数,则实数m的取值范围是(  )
A.(-∞,1)B.(-∞,1]C.$({-∞,\frac{1}{2}}]$D.$(-∞,\frac{1}{2})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.平面向量$\overrightarrow a$=(m,1),$\overrightarrow b$=(1,2),若$\overrightarrow a$⊥$\overrightarrow b$,则实数m的值为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知点A、B、C为直线l上不同的三点,点O∉l,实数x满足关系式x2$\overrightarrow{OA}$+2x$\overrightarrow{OB}$+$\overrightarrow{OC}$=0,则下列结论中正确的个数有(  )
①$\overrightarrow{OB}$2-$\overrightarrow{OA}$•$\overrightarrow{OC}$≥0           ②$\overrightarrow{OB}$2-$\overrightarrow{OA}$•$\overrightarrow{OC}$<0
③x的值有且只有一个    ④x的值有两个        
 ⑤点B是线段AC的中点.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.(1)(2$\frac{7}{9}$)0.5+0.1-2+(2$\frac{10}{27}$)${\;}^{-\frac{2}{3}}$-3π0+$\frac{37}{48}$;   
(2)$(2\root{3}{a^2}•\sqrt{b})(-6\sqrt{a}•\root{3}{b})÷(-3\root{6}{a}•\root{6}{b^5})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)=6cos(ωπx+$\frac{π}{3}$)的最小正周期为$\frac{2}{3}$,则ω=±3.

查看答案和解析>>

同步练习册答案