精英家教网 > 高中数学 > 题目详情
2.在(x+$\frac{3}{\sqrt{x}}$)n的展开式中,各项系数与二项式系数和之比为64,则x3的系数为(  )
A.15B.45C.135D.405

分析 对于二项式各项系数的和可以通过赋值令x=1来求解,而各项二项式系数之和由二项式系数公式可知为2n,最后通过比值关系为64即可求出n的值,利用二项式定理的展开式中的通项,再求出特定项的系数,求出所求即可

解答 解:令(x+$\frac{3}{\sqrt{x}}$)n中x为1得各项系数和为4n
又展开式的各项二项式系数和为2n
∵各项系数的和与各项二项式系数的和之比为64,
∴$\frac{{4}^{n}}{{2}^{n}}$=64,
解得n=6,
∴二项式的展开式的通项公式为Tr+1=C6r•3r•${x}^{6-\frac{3}{2}r}$,
令6-$\frac{3}{2}$r=3,求得r=2,故开式中含x3项系数为C62•32=135,
故选:C.

点评 本题主要考查二项式定理的应用,二项式展开式的通项公式,二项式系数的性质,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.若函数f(x)=(m-1)x2+6mx+2是偶函数,则f(x)的单调增区间为(-∞,0].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知数列{an}满a1=a,a2=b,3an+2-5an+1+2an=0(n≥0,n∈N),求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设f(x)是定义在R上的奇函数,且f(x+3)•f (x)=-1,f(-1)=2,则f(2017)=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设f(x)=-$\frac{1}{x}$+ln$\frac{1+x}{1-x}$.
(1)求函数的定义域;
(2)判断函数f(x)的奇偶性;
(3)讨论函数f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列各式中,值为$\frac{{\sqrt{3}}}{2}$的是(  )
A.2sin15°cos15°B.2sin215°-1C.cos215°-sin215°D.sin230°+cos230°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知向量$\overrightarrow{a}$=(sinx,$\frac{3}{2}$),$\overrightarrow{b}$=(cosx,-1)当$\overrightarrow{a}$∥$\overrightarrow{b}$时,求$\frac{2sinx-cosx}{4sinx+3cosx}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.数列{an}中,an=$\frac{1}{\sqrt{n}+\sqrt{n+1}}$,Sn=9,则n=(  )
A.97B.98C.99D.100

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.连续地投掷一枚质地均匀的骰子四次,正面朝上的点数恰好有2次为3的倍数的概率为(  )
A.$\frac{1}{16}$B.$\frac{8}{27}$C.$\frac{2}{81}$D.$\frac{4}{81}$

查看答案和解析>>

同步练习册答案