精英家教网 > 高中数学 > 题目详情

【题目】已知点,点是圆上任意一点,线段的垂直平分线与半径交于点,当点在圆上运动时,

(1)求点的轨迹的方程;

(2)过作直线与曲线相交于两点, 为坐标原点,求面积的最大值.

【答案】(1);(2)当且仅当时, 有最大值.

【解析】试题分析:(1)根据垂直平分线性质得,从而可得,再根据椭圆定义确定轨迹及其方程(2)先设直线点斜式方程,与椭圆联立方程组结合韦达定理可得,再根据的面积公式可得关于k的分式函数,最后利用基本不等式求最值

试题解析:(1)由已知线段的垂直平分线与半径交于点,

所以,而,

所以,因此点的轨迹是以为焦点,

长轴长为4的椭圆,所以所以的轨迹的方程是;

(2)设直线的方程是

将直线的方程代入曲线的方程可得,

显然,且,,

=====,

,

因此当且仅当时, 有最大值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线的极坐标方程为过点的直线的参数方程为为参数),直线与曲线相交于两点.

(1)写出曲线的直角坐标方程和直线的普通方程;

(2),的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段.下表为10名学生的预赛成绩,其中有三个数据模糊.

学生序号

1

2

3

4

5

6

7

8

9

10

立定跳远(单位:米)

1.96

1.92

1.82

1.80

1.78

1.76

1.74

1.72

1.68

1.60

30秒跳绳(单位:次)

63

a

75

60

63

72

70

a1

b

65

在这10名学生中,进入立定跳远决赛的有8人,同时进入立定跳远决赛和30秒跳绳决赛的有6人,则

A2号学生进入30秒跳绳决赛

B5号学生进入30秒跳绳决赛

C8号学生进入30秒跳绳决赛

D9号学生进入30秒跳绳决赛

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项和为Sn.已知2Sn3n3.

(1)求{an}的通项公式;

(2)若数列{bn}满足anbnlog3an,求{bn}的前n项和Tn.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=axlnx﹣x+l (aR),且f(x)0.

(I)求a;

II)求证:当,nN*时,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的单调区间;

(2)若关于的不等式恒成立,求整数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,以原点为极点,x轴的正半轴为极轴建立极坐标系.已知曲线Cρsin2θ2acos θ(a>0),过点P(2,-4)的直线l的参数方程为,直线l与曲线C分别交于MN两点.若|PM||MN||PN|成等比数列,则a的值为________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法:

①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;

②设有一个回归方程=3-5x,变量x增加一个单位时,y平均增加5个单位;

③线性回归方程x必过();

④在一个2×2列联表中,由计算得K2=13.079,则有99%以上的把握认为这两个变量间有关系.

其中错误的个数是(  )

本题可以参考独立性检验临界值表:

P(K2k0)

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

k0

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

A. 0 B. 1

C. 2 D. 3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路,记两条相互垂直的公路为l1l2,山区边界曲线为C,计划修建的公路为l,如图所示,MNC的两个端点,测得点Ml1l2的距离分别为5千米和40千米,点Nl1l2的距离分别为20千米和2.5千米,以l2l1所在的直线分别为xy轴,建立平面直角坐标系xOy,假设曲线C符合函数y (其中ab为常数)模型.

(1)求ab的值;

(2)设公路l与曲线C相切于P点,P的横坐标为t.

①请写出公路l长度的函数解析式f(t),并写出其定义域;

②当t为何值时,公路l的长度最短?求出最短长度.

查看答案和解析>>

同步练习册答案