精英家教网 > 高中数学 > 题目详情

【题目】如图.已知等腰梯形ABCD中,AB∥CD,AD=AB=CD,M是的CD的中点.N是AC与BM的交点,将△BCM沿BM向上翻折成△BPM,使平面BPM⊥平面ABMD
(I)求证:AB⊥PN.
(Ⅱ)若E为PA的中点.求证:EN∥平面PDM.

【答案】证明:(1)连结AM,
∵M是的CD的中点,AB=CD,AB∥CD,
∴四边形ABCM是平行四边形,四边形ABMD是平行四边形,
∴N是BM的中点,BM=AD,又∵AD=BC,
∴△BCM是等边三角形,即△PBM是等边三角形.
∴PN⊥BM,∵平面PBM⊥平面ABMD,平面PBM∩平面ABMD=BM,PN平面PBM,
∴PN⊥平面ABMD,∵AB平面ABMD,
∴AB⊥PN.
(2)连结PC,∵E是PA的中点,N是AC的中点,
∴EN∥PC,
∵PC平面PDM,EN平面PDM,
∴EN∥平面PDM.

【解析】(1)连结AM,则可证△BCM为等边三角形,从而PN⊥BM,由面面垂直得出PN⊥平面ABMD,故而PN⊥AB;
(2)连结PC,由中位线定理得EN∥PC,故而EN∥平面PDM.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列四个函数:①y=3﹣x;② ;③y=x2+2x﹣10;④ ,其中值域为R的函数有(
A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l过点P(0,2),斜率为k,圆Q:x2+y2﹣12x+32=0.
(1)若直线l和圆相切,求直线l的方程;
(2)若直线l和圆交于A、B两个不同的点,问是否存在常数k,使得+共线?若存在,求出k的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若集合A={x|ax2﹣3x+2=0,a∈R}有且仅有两个子集,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|12﹣5x﹣2x2>0},B={x|x2﹣ax+b≤0}满足A∩B=,A∪B=(﹣4,8],求实数a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知中心在原点,焦点在轴上的椭圆过点,离心率为 是椭圆的长轴的两个端点(位于右侧),是椭圆在轴正半轴上的顶点.

(1)求椭圆的标准方程;

(2)是否存在经过点且斜率为的直线与椭圆交于不同两点,使得向量共线?如果存在,求出直线方程;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为直角坐标系的坐标原点,双曲线 上有一点),点轴上的射影恰好是双曲线的右焦点,过点作双曲线两条渐近线的平行线,与两条渐近线的交点分别为 ,若平行四边形的面积为1,则双曲线的标准方程是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某服装销售公司进行关于消费档次的调查,根据每人月均服装消费额将消费档次分为0-500元;500-1000元;1000-1500元;1500-2000元四个档次,针对两类人群各抽取100人的样本进行统计分析,各档次人数统计结果如下表所示:

0~

500元

500~

1000元

1000~

1500元

1500~

2000元

A类

20

50

20

10

B类

50

30

10

10

月均服装消费额不超过1000元的人群视为中低消费人群,超过1000元的视为中高收入人群.

(Ⅰ)从类样本中任选一人,求此人属于中低消费人群的概率;

(Ⅱ)从两类人群中各任选一人,分别记为甲、乙,估计甲的消费档次不低于乙的消费档次的概率;

(Ⅲ)以各消费档次的区间中点对应的数值为该档次的人均消费额,估计两类人群哪类月均服装消费额的方差较大(直接写出结果,不必说明理由).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合M={x|0≤x≤2},N={y|0≤y≤2},从M到N有四种对应如图所示:

其中能表示为M到N的映射关系的有(请填写符合条件的序号)

查看答案和解析>>

同步练习册答案