精英家教网 > 高中数学 > 题目详情
17.已知函数f(x)=$\frac{1}{3}$x3+$\frac{1}{2}$(2a+1)x2-2(a+1)x.
(1)若f(x)在x=1处取得极大值,求实数a的取值范围;
(2)存在x∈[1,2],使f(x)≤0,求实数a的取值范围.

分析 (1)求导数,利用(x)在x=1处取得极大值,可得-2a-2>1,即可求实数a的取值范围;
(2)存在x∈[1,2],使f(x)≤0,即x∈[1,2],使f(x)max≤0.分类讨论,即可得出结论.

解答 解:(1)∵函数f(x)=$\frac{1}{3}$x3+$\frac{1}{2}$(2a+1)x2-2(a+1)x,
∴f′(x)=x2+(2a+1)x-2(a+1)=(x-1)(x+2a+2),
∵f(x)在x=1处取得极大值,
∴-2a-2>1,
∴a<-$\frac{3}{2}$;
(2)存在x∈[1,2],使f(x)≤0,即x∈[1,2],使f(x)max≤0.
①-2a-2≤1,函数在[1,2]上单调递增,∴f(x)max=f(2)=$\frac{2}{3}$,不符合题意;
②-2a-2>2,即a<-2,函数在[1,2]上单调递减,∴f(x)max=f(1)=-a-$\frac{7}{6}$≤0,∴a≥-$\frac{7}{6}$,无解;
③1<-2a-2≤2,即-2≤a≤-$\frac{3}{2}$,函数在[1,-2a-2]上单调递减,在[-2a-2,2]上单调递增,f(2)=$\frac{2}{3}$>0,x∈[1,2],使f(x)max≤0,不成立.
综上所述,不存在a,对于存在x∈[1,2],使f(x)≤0成立.

点评 本题考查导数知识的综合运用,考查函数的极值,考查存在性问题,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=$\left\{\begin{array}{l}{ln(x+1),0<x≤2}\\{1-{2}^{x},-2≤x≤0}\end{array}\right.$,若函数y=|f(x)|图象与直线y=kx+k有3个交点,则实数k的取值范围是(  )
A.(0,$\frac{1}{e}$)B.(0,$\frac{1}{2e}$)C.[$\frac{ln3}{3}$,$\frac{1}{2e}$)D.[$\frac{ln3}{3}$,$\frac{1}{e}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左、右焦点分别为F1、F2,椭圆C过点P(1,$\frac{{\sqrt{2}}}{2}}$),直线PF1交y轴于Q,且$\overrightarrow{P{F}_{2}}$=2$\overrightarrow{QO}$,O为坐标原点.
(1)求椭圆C的方程;
(2)设M是椭圆C的上顶点,过点M分别作直线MA,MB交椭圆C于A,B两点,设这两条直线的斜率分别为k1,k2,且k1+k2=2,证明:直线AB过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知a为实数,若复数z=a2-1+(a+1)i为纯虚数,则(a+i2015)(1+i)=(  )
A.2B.-2C.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.如图是一个算法流程图,则输出的n的值是5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如图所示的流程图是将一系列指令和问题用框图的形式排列而成.箭头说明下一步是到哪一个框图,阅读这个流程图,回答下列问题:
如果$a={log_3}\frac{1}{2},b={(\frac{1}{2})^{\frac{1}{3}}},c=\frac{3}{2}•\frac{{{x^2}+1}}{x}(x≥1)$,那么输出的数是c.(用a,b,c填空)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=x3+bx2+cx+d(b,c,d为常数),当x∈(0,1)时取得极大值,当x∈(1,2)时取极小值,则(b+$\frac{1}{2}$)2+(c-3)2的取值范围是(5,25).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知A=[$\begin{array}{l}2&0\\{-1}&1\end{array}}$],B=[$\begin{array}{l}2&4\\ 3&5\end{array}}$],且二阶矩阵M满足AM=B.
(1)求A-1
(2)求矩阵M.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=$\frac{4}{3}$x3-2x2+ax+b的图象在点P(0,f(0))处的切线方程为y=2x+1.
(I)求实数a、b的值;
(Ⅱ)设g(x)=f(x)+$\frac{m}{2x-1}$是[1,+∞)上的增函数,
(i)求实数m的最大值;
(ii)当m取最大值时,是否存在点Q,使得过点Q的直线能与曲线y=g(x)围成两个封闭图形,则这两个封闭图形的面积总相等?若存在,求出点Q的坐标,若不存在,说明理由.

查看答案和解析>>

同步练习册答案