分析 (1)求导数,利用(x)在x=1处取得极大值,可得-2a-2>1,即可求实数a的取值范围;
(2)存在x∈[1,2],使f(x)≤0,即x∈[1,2],使f(x)max≤0.分类讨论,即可得出结论.
解答 解:(1)∵函数f(x)=$\frac{1}{3}$x3+$\frac{1}{2}$(2a+1)x2-2(a+1)x,
∴f′(x)=x2+(2a+1)x-2(a+1)=(x-1)(x+2a+2),
∵f(x)在x=1处取得极大值,
∴-2a-2>1,
∴a<-$\frac{3}{2}$;
(2)存在x∈[1,2],使f(x)≤0,即x∈[1,2],使f(x)max≤0.
①-2a-2≤1,函数在[1,2]上单调递增,∴f(x)max=f(2)=$\frac{2}{3}$,不符合题意;
②-2a-2>2,即a<-2,函数在[1,2]上单调递减,∴f(x)max=f(1)=-a-$\frac{7}{6}$≤0,∴a≥-$\frac{7}{6}$,无解;
③1<-2a-2≤2,即-2≤a≤-$\frac{3}{2}$,函数在[1,-2a-2]上单调递减,在[-2a-2,2]上单调递增,f(2)=$\frac{2}{3}$>0,x∈[1,2],使f(x)max≤0,不成立.
综上所述,不存在a,对于存在x∈[1,2],使f(x)≤0成立.
点评 本题考查导数知识的综合运用,考查函数的极值,考查存在性问题,考查学生分析解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | (0,$\frac{1}{e}$) | B. | (0,$\frac{1}{2e}$) | C. | [$\frac{ln3}{3}$,$\frac{1}{2e}$) | D. | [$\frac{ln3}{3}$,$\frac{1}{e}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com