分析 (1)使用二倍角公式化简f(x),令f(x)=0,利用正弦函数的图象与性质得出零点.
(2)根据正弦函数的性质得出f(x)的最值;
(3)将化简后的f(x)进行图象变换得到y=sinx即可.
解答 解:(1)f(x)=$\frac{1}{2}$sinx+$\frac{\sqrt{3}}{2}$cosx+$\frac{\sqrt{3}}{2}$=sin(x+$\frac{π}{3}$)+$\frac{\sqrt{3}}{2}$.
∵x∈[0,π],∴x+$\frac{π}{3}$∈[$\frac{π}{3}$,$\frac{4π}{3}$],
令f(x)=0得sin(x+$\frac{π}{3}$)=-$\frac{\sqrt{3}}{2}$,
∴x+$\frac{π}{3}$=$\frac{4π}{3}$,x=π.
(2)∵-1≤sin(x+$\frac{π}{3}$)≤1.
∴当sin(x+$\frac{π}{3}$)=-1时,f(x)取得最小值$\frac{\sqrt{3}}{2}-1$,
当sin(x+$\frac{π}{3}$)=1时,f(x)取得最大值$\frac{\sqrt{3}}{2}+1$.
∴f(x)的值域是[$\frac{\sqrt{3}}{2}-1$,$\frac{\sqrt{3}}{2}+1$].
(3)将f(x)的图象先向右平移$\frac{π}{3}$个单位,再向下平移$\frac{\sqrt{3}}{2}$个单位得到的函数图象关于原点对称.
点评 本题考查了三角函数的恒等变换,正弦函数的图象与性质,函数图象的变换,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | $\frac{8\sqrt{2}}{3}$ | C. | $\sqrt{3}$ | D. | $\frac{8\sqrt{3}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{1}{2}$ | B. | $-\frac{5}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{5}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,$\frac{π}{4}$) | B. | (0,$\frac{π}{3}$) | C. | ($\frac{π}{4}$,$\frac{π}{2}$) | D. | ($\frac{π}{6}$,$\frac{π}{3}$) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com