精英家教网 > 高中数学 > 题目详情
5.已知数列{an}满足a1=15,a2=$\frac{43}{3}$,且2an+1=an+an+2.若ak•ak+1<0,则正整数k=(  )
A.21B.22C.23D.24

分析 由已知数列递推式可知,数列{an}是以15为首项,以$-\frac{2}{3}$为公差的等差数列,求得等差数列的通项公式,得到数列前23项大于0,自第24项起小于0,则答案可求.

解答 解:由2an+1=an+an+2,得an+1-an=an+2-an+1
又a1=15,a2=$\frac{43}{3}$,∴${a}_{2}-{a}_{1}=\frac{43}{3}-15=-\frac{2}{3}$,
则数列{an}是以15为首项,以$-\frac{2}{3}$为公差的等差数列,
∴${a}_{n}=15-\frac{2}{3}(n-1)=\frac{47}{3}-\frac{2}{3}n$.
由an>0,得$\frac{47}{3}-\frac{2}{3}n>0$,得n$<\frac{47}{2}$,
∵n∈N*,∴n≤23.
则使ak•ak+1<0的正整数k=23.
故选:C.

点评 本题考查数列递推式,考查了等差关系的确定,考查了等差数列的通项公式,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.已知i为虚数单位,复数z=2i+$\frac{2}{1+i}$,则复数z的模为$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.定义在R上的函数f(x)是减函数,且函数y=f(x)的图象关于原点中心对称,若s,t满足不等式f(s2-2s)≤-f(2t-t2),其中t=k•s.则当2<s<4时,k的取值范围是(  )
A.[-$\frac{1}{2}$,1]B.(-∞,0)∪[1,+∞)C.(-$\frac{1}{2}$,1]D.(-∞,0]∪[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设a为正实数,则函数f(x)=a+sin$\frac{x}{a}$的图象可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.计算:${∫}_{-1}^{1}$(x3-$\frac{1}{{x}^{4}}$)dx=(  )
A.-2B.-$\frac{2}{3}$C.$\frac{2}{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知a,b,c分别是△ABC的三个内角A,B,C所对的边,且满足(2b-a)•cosC=c•cosA.
(Ⅰ)求角C的大小;
(Ⅱ)设y=-4$\sqrt{3}$sin2$\frac{A}{2}$+2sin(C-B),求y的最大值并判断当y取得最大值时△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数y=f(x)的图象沿x轴向左平移$\frac{π}{6}$个单位得到函数g(x)=$\sqrt{3}$sin2x+cos2x的图象,则函数y=f(x)的一条对称轴为(  )
A.x=-$\frac{π}{4}$B.x=-$\frac{π}{3}$C.x=$\frac{π}{4}$D.x=$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设a∈R,则“a>1”是“a>$\frac{1}{a}$”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设实数x,y满足(x-2)2+y2=3,那么$\sqrt{{x}^{2}+{y}^{2}}$的最大值是(  )
A.$\frac{1}{2}$B.$\sqrt{3}$C.1+$\sqrt{3}$D.2+$\sqrt{3}$

查看答案和解析>>

同步练习册答案