精英家教网 > 高中数学 > 题目详情
曲线f(x)=xlnx在点x=1处的切线方程为(  )
A、y=2x+2
B、y=2x-2
C、y=x-1
D、y=x+1
考点:利用导数研究曲线上某点切线方程
专题:计算题,导数的概念及应用
分析:求导函数,确定切线的斜率,求得切点坐标,进而可求切线方程.
解答: 解:求导函数,可得y′=lnx+1
x=1时,y′=1,y=0
∴曲线y=xlnx在点x=1处的切线方程是y=x-1
即y=x-1.
故选:C.
点评:本题考查导数知识的运用,考查导数的几何意义,求出切线的斜率是关键,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若双曲线与椭圆
x2
27
+
y2
36
=1有共同的焦点,且与椭圆相交,其中一个交点A的纵坐标为4,则双曲线的方程为(  )
A、
y2
4
-
x2
5
=1
B、
x2
5
-
y2
4
=1
C、
y2
3
-
x2
5
=1
D、
x2
5
-
y2
3
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

sin2013°的值属于区间(  )
A、(
1
2
,1)
B、(0,
1
2
C、(-1,-
1
2
D、(-
1
2
,0)

查看答案和解析>>

科目:高中数学 来源: 题型:

设随机变量ξ服从正态分布N(0,σ2),若P(ξ<-1)=0.2,则P(-1<ξ<1)=(  )
A、0.2B、0.3
C、0.4D、0.6

查看答案和解析>>

科目:高中数学 来源: 题型:

关于x的方程3x=a2+2a在(-∞,1]上有解,则实数a的取值范围是(  )
A、[-2,-1)∪(0,1]
B、[-3,-2)∪[0,1]
C、[-3,-2)∪(0,1]
D、[-2,-1)∪[0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

复数z=
5
3+4i
,|
.
z
|是(  )
A、25B、5C、1D、7

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式(
1
2
-x)(x-
1
3
)>0的解集为(  )
A、{x|
1
3
<x<
1
2
}
B、{x|x>
1
2
}
C、{x|x<
1
3
}
D、{x|x<
1
3
或x>
1
2
}

查看答案和解析>>

科目:高中数学 来源: 题型:

等差数列{an}中,a1+a5=6,a6=5,那么a9的值是(  )
A、-7
B、7
C、-
11
3
D、
11
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(2ωx-
π
6
)-
1
2
图象相邻两条对称轴间的距离为
π
2

(Ⅰ)求函数f(x)的最小正周期和单调增区间;
(Ⅱ)函数f(x)图象向右平移φ(φ>0)个单位后对应函数为偶函数,求φ

查看答案和解析>>

同步练习册答案