【题目】对于不等式
,则对区间
上的任意x都成立的实数t的取值范围是_______.
【答案】![]()
【解析】
根据二次函数的单调性求出x2﹣3x+2在区间[0,2]上的最小值和最大值,把问题转化关于t的不等式组
得答案.
∵x2﹣3x+2=
,
∴当x∈[0,2]时,
,(x2﹣3x+2)max=2.
∴
.
∴对于不等式
(2t﹣t2)≤x2﹣3x+2≤3﹣t2,对区间[0,2]上任意x都成立的实数t的取值范围是[﹣1,1﹣
].
故答案为:[﹣1,1﹣
].
【点睛】
本题考查函数恒成立问题,考查了不等式的解法,体现了数学转化思想方法,是基础题.二次不等式分含参二次不等式和不含参二次不等式;对于含参的二次不等式问题,先判断二次项系数是否含参,接着讨论参数等于0,不等于0,再看式子能否因式分解,若能够因式分解则进行分解,再比较两根大小,结合图像得到不等式的解集.
【题型】填空题
【结束】
16
【题目】等差数列{an}的公差d≠0满足
成等比数列,若
=1,Sn是{
}的前n项和,则
的最小值为________.
科目:高中数学 来源: 题型:
【题目】已知函数
,该函数所表示的曲线上的一个最高点为
,由此最高点到相邻的最低点间曲线与
轴交于点
.
(1)求
函数解析式;
(2)求函数
的单调区间;
(3)若
,求
的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A、B、C的对边分别为a、b、c,且sinCcosB+sinBcosC=3sinAcosB;
(1)求cosB的值;
(2)若
=2,且b=2
,求a+c的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在如图所示的锐角三角形空地中, 欲建一个面积不小于300m2的内接矩形花园(阴影部分), 则其边长x(单位m)的取值范围是 ( )
![]()
(A) [15,20](B) [12,25] (C) [10,30](D) [20,30]
【答案】C
【解析】如图△ADE∽△ABC,设矩形的另一边长为y,则
,所以
,又
,所以
,即
,解得
.
【考点定位】本题考查平面几何知识和一元二次不等式的解法,对考生的阅读理解能力、分析问题和解决问题的能力以及探究创新能力都有一定的要求.属于难题.
【题型】单选题
【结束】
10
【题目】设等差数列{an}的前n项和为Sn,若Sm-1=-2,Sm=0,Sm+1=3,则m=( )
A. 5 B. 4 C. 3 D. 6
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
)的部分图象如图所示. ![]()
(1)求函数f(x)的解析式,并写出f(x)的单调减区间;
(2)△ABC的内角分别是A,B,C,若f(A)=1,cosB=
,求sinC的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱柱ABCD﹣A1B1C1D1中,侧棱A1A⊥底面ABCD,AB⊥AC,AB=1,AC=AA1=2,AD=CD=
,且点M和N分别为B1C和D1D的中点.
(I)求证:MN∥平面ABCD;
(II)求二面角D1﹣AC﹣B1的正弦值.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,AB//CD,且![]()
![]()
(1)证明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC,
,且四棱锥P-ABCD的体积为
,求该四棱锥的侧面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com