精英家教网 > 高中数学 > 题目详情
8.从1,2,3,4,5这5个数字中随机抽取3个,则所抽取的数字中有且仅有1个数能被2整除的概率为$\frac{3}{5}$.

分析 先求出基本事件总数n=${C}_{5}^{3}=10$,再列举法求出所抽取的数字中有且仅有1个数能被2整除包含的基本事件个数,由此能求出所抽取的数字中有且仅有1个数能被2整除的概率.

解答 解:从1,2,3,4,5这5个数字中随机抽取3个,
基本事件总数n=${C}_{5}^{3}=10$,
所抽取的数字中有且仅有1个数能被2整除包含的基本事件有:
123,125,325,134,145,345,共6个,
∴所抽取的数字中有且仅有1个数能被2整除的概率为:
p=$\frac{6}{10}=\frac{3}{5}$.
故答案为:$\frac{3}{5}$.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.以下关于导数和极值点的说法中正确的是(  )
A.可导函数f(x)为增函数的充要条件是f'(x)>0.
B.若f(x)可导,则f'(x0)=0是x0为f(x)的极值点的充要条件.
C.f(x)在R上可导,若?x1,x2∈R,且x1≠x2,$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}>2017$,则?x∈R,f'(x)>2017.
D.若奇函数f(x)可导,则其导函数f'(x)为偶函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知复数z满足|3+4i|+z=1+3i.
(Ⅰ)求$\overline{z}$;
(Ⅱ)求$\frac{(1+i)^{2}(3+4i)}{z}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知某学校有1680名学生,现在采用系统抽样的方法抽取84人,调查他们对学校食堂的满意程度,将1680人,按1,2,3,…,1680随机编号,则在抽取的84人中,编号落在[61,160]内的人数为(  )
A.7B.5C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数$y=sin({4x-\frac{π}{3}})$的图象的一条对称轴方程是(  )
A.$x=-\frac{11π}{24}$B.$x=\frac{π}{8}$C.$x=\frac{π}{4}$D.$x=\frac{11π}{24}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数$f(x)=\frac{lnx}{x}$,g(x)=ex
(Ⅰ)若关于x的不等式f(x)≤mx≤g(x)恒成立,求实数m的取值范围;
(Ⅱ)若x1>x2>0,求证:[x1f(x1)-x2f(x2)]$({x_1^2+x_2^2})$>2x2(x1-x2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在各项都为正数的等比数列{an}中,已知a1=2,$a_{n+2}^2+4a_n^2=4a_{n+1}^2$,则数列{an}的通项公式an=${2}^{\frac{n+1}{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.过动点M作圆:(x-2)2+(y-2)2=1的切线MN,其中N为切点,若|MN|=|MO|(O为坐标原点),则|MN|的最小值是$\frac{{7\sqrt{2}}}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知P,A,B,C是球O球面上的四点,△ABC是正三角形,三棱锥P-ABC的体积为$\frac{9\sqrt{3}}{4}$,且∠APO=∠BPO=∠CPO=30°,则球O的表面积为(  )
A.B.$\frac{32}{3}$πC.16πD.12π

查看答案和解析>>

同步练习册答案