精英家教网 > 高中数学 > 题目详情
5.集合A={1,2,3,4},B={x|(x-1)(x-a)<0},若集合A∩B={2,3},则实数a的范围是(  )
A.3<a<4B.3<a≤4C.3≤a<4D.a>3

分析 根据集合的交集的运算即可求出a的范围.

解答 解:集合A={1,2,3,4},B={x|(x-1)(x-a)<0},
∵集合A∩B={2,3},
∴B=(1,a),
∴3<a≤4,
故选:B

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知直线l1:x-2y+3=0与直线l2:2x+3y-8=0的交点为M,
(1)求过点M且到点P(0,4)的距离为2的直线l的方程;
(2)求过点M且与直线l3:x+3y+1=0平行的直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=$\sqrt{1-ax}$在区间[-1,+∞)有意义,则实数a的取值范围是[-1,0].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若sinx=-$\frac{{\sqrt{2}}}{2}$,则cos2x=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.以直角坐标系的原点O为极点,x轴正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρsin2θ=4cosθ;(1)求曲线C的直角坐标方程;
(2)若直线l的参数方程为$\left\{\begin{array}{l}x=1+\frac{2}{{\sqrt{5}}}t\\ y=1+\frac{1}{{\sqrt{5}}}t\end{array}\right.$(t为参数),设点P(1,1),直线l与曲线C相交于A,B两点,求|PA|+|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x}-m(x>0)}\\{-{x}^{2}-2mx(x≤0)}\end{array}\right.$,若函数g(x)=f(x)-m恰有3个零点,则实数m的取值范围是(  )
A.(-∞,$\frac{1}{2}$)B.(-∞,1)C.($\frac{1}{2}$,1)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在数列{an}中,a1=2,an=an-1+ln(1+$\frac{1}{n-1}$)(n≥2)则{an}=(  )
A.2+nlnnB.2+(n-1)lnnC.2+lnnD.1+n+lnn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.一个正方体的棱长为2,则该正方体的内切球的体积为$\frac{4π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知数列{an}中,${a_n}≠0,{a_1}=1,\frac{1}{{{a_{n+1}}}}=\frac{1}{a_n}+2$,则a20的值为$\frac{1}{39}$ .

查看答案和解析>>

同步练习册答案