精英家教网 > 高中数学 > 题目详情
.已知中心在原点O,焦点在轴上,离心率为的椭圆;以椭圆的顶点为顶点构成的四边形的面积为4.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若A\B分别是椭圆长轴的左.右端点,动点M满足,直线MA交椭圆于P,求的取值范围.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
给定椭圆>0,称圆心在原点,半径为的圆是椭圆的“准圆”。若椭圆的一个焦点为,其短轴上的一个端点到的距离为
(1)求椭圆的方程和其“准圆”方程;
(2)点是椭圆的“准圆”上的一个动点,过点作直线,使得与椭圆都只有一个交点。求证:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
已知椭圆的离心率为,短轴的长为2.
(1)求椭圆的标准方程
(2)若经过点的直线与椭圆交于两点,满足,求的方程

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题14分)
已知直线与椭圆相交于两点,为坐标原点,
(1)求证:
(2)如果直线向下平移1个单位得到直线,试求椭圆截直线所得线段的长度。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题


本小题满分14分)
已知椭圆的左、右焦点分别为F1、F2,若以F2为圆心,b-c为半径作圆F2,过椭圆上一点P作此圆的切线,切点为T,且的最小值不小于
(1)证明:椭圆上的点到F2的最短距离为
(2)求椭圆的离心率e的取值范围;
(3)设椭圆的短半轴长为1,圆F2轴的右交点为Q,过点Q作斜率为的直线与椭圆相交于A、B两点,若OA⊥OB,求直线被圆F2截得的弦长S的最大值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.(本题14分) 设直线(其中为整数)与椭圆交于不同两点,与双曲线交于不同两点,问是否存在直线,使得向量,若存在,指出这样的直线有多少条?若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

分别是椭圆的左右焦点.
(1)若M是该椭圆上的一个动点,求的最大值和最小值;
(2)设过定点(0,2)的直线与椭圆交于不同的两点A、B,且为钝角,(其中O为坐标原点),求直线的余斜率的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆的左、右焦点分别为F1,F2,若椭圆上存在一点P使,则该椭圆的离心率e的取值范围是_______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

.已知是椭圆的两个焦点,为椭圆上一点,且,则的面积         .

查看答案和解析>>

同步练习册答案