精英家教网 > 高中数学 > 题目详情
分别是椭圆的左右焦点.
(1)若M是该椭圆上的一个动点,求的最大值和最小值;
(2)设过定点(0,2)的直线与椭圆交于不同的两点A、B,且为钝角,(其中O为坐标原点),求直线的余斜率的取值范围。

(1)由条件知道两焦点坐标为
设M(x,y),
=
点M在椭圆上,故有,所以的取值范围是
(2)令直线的方程为

,得出

由于为钝角,故

=

综上,,所以k的取值范围是
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分16分)
如图,椭圆过点,其左、右焦点分别为,离心率是椭圆右准线上的两个动点,且
(1)求椭圆的方程;
(2)求的最小值;
(3)以为直径的圆是否过定点?
请证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设椭圆的左右焦点分别为是椭圆上的一点,且,坐标原点直线的距离为
(1)求椭圆的方程;
(2) 设是椭圆上的一点,过点的直线轴于点,交轴于点,若,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
已知椭圆方程为,抛物线方程为.过抛物线的焦点作轴的垂线,与抛物线在第一象限的交点为,抛物线在点处的切线经过椭圆的右焦点. 
(1)求满足条件的椭圆方程和抛物线方程;
(2)设为椭圆上的动点,由轴作垂线,垂足为,且直线上一点满足,求点的轨迹方程,并说明轨迹是什么曲线?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)

已知菱形的顶点在椭圆上,对角线所在直线的斜率为1.
(1)当直线过点时,求直线的方程;
(2)当时,求菱形面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.已知中心在原点O,焦点在轴上,离心率为的椭圆;以椭圆的顶点为顶点构成的四边形的面积为4.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若A\B分别是椭圆长轴的左.右端点,动点M满足,直线MA交椭圆于P,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆中,以点M(-1,2)为中点的弦所在的直线斜率为     ▲     

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

 已知函数的图象在点处的切线恰好与垂直,则(Ⅰ)的值分别为  13  ;(Ⅱ)若上单调递增,则m的取值范

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
已知椭圆的标准方程为,过点的双曲线的实轴的两端点恰好是椭圆的两焦点,求双曲线的标准方程.

查看答案和解析>>

同步练习册答案