精英家教网 > 高中数学 > 题目详情
1.已知递减等比数列{an}满足a2+a4=$\frac{5}{16}$,a1a5=$\frac{1}{64}$.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足anbn=n,求数列{bn}的前n项和Sn

分析 (1)设等比数列{an}的公比为q,由等比数列的性质,可得a2+a4=$\frac{5}{16}$,a2a4=$\frac{1}{64}$,解得a2,a4,注意递减,再由等比数列的通项公式,计算即可得到;
(2)求得bn=$\frac{n}{{a}_{n}}$=n•2n,运用数列的求和方法:错位相减法,结合等比数列的求和公式,计算即可得到所求.

解答 解:(1)设等比数列{an}的公比为q,
由a2+a4=$\frac{5}{16}$,a1a5=$\frac{1}{64}$,可得
a2+a4=$\frac{5}{16}$,a2a4=$\frac{1}{64}$,
解得a2=$\frac{1}{4}$,a4=$\frac{1}{16}$或a4=$\frac{1}{4}$,a2=$\frac{1}{16}$,
由等比数列递减,可得a2=$\frac{1}{4}$,a4=$\frac{1}{16}$,
即有q2=$\frac{{a}_{4}}{{a}_{2}}$=$\frac{1}{4}$,解得q=$\frac{1}{2}$,
即有an=$\frac{1}{{2}^{n}}$;
(2)anbn=n,可得bn=$\frac{n}{{a}_{n}}$=n•2n
前n项和Sn=1•2+2•22+…+n•2n
2Sn=1•22+2•23+…+n•2n+1
两式相减可得,-Sn=2+22+…+2n-n•2n+1
=$\frac{2(1-{2}^{n})}{1-2}$-n•2n+1
化简可得Sn=(n-1)•2n+1+2.

点评 本题考查等比数列的通项公式和求和公式的运用,考查数列的求和方法:错位相减法,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.$\underset{lim}{x→∞}$($\frac{x+3}{x+1}$)2x+2的值为e4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若集合U={x∈N*|x≤6},S={1,4,5},T={2,3,4},则S∩(∁UT)=(  )
A.{1,4,5,6}B.{1,5}C.{1,4}D.{1,2,3,4,5}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在△ABC中,角A、B、C所对的边分别是a、b、c.若∠C=$\frac{2}{3}$π,a、b、c依次成等差数列,且公差为2,如图.A′B′分别在射线CA,CB上运动,且满足A′B′=AB,设∠A′B′C′=θ,则△A′CB′周长最大值为7+$\frac{14\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设x>0,y>0,且($\frac{x-y}{2}$)2=$\frac{4}{xy}$,则当x+y取最小值时,x2+y2=(  )
A.24B.22C.16D.12

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若x轴上的点P与点(-1,3)的距离为5,则点P的坐标为(3,0)或(-5,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.若a是从区间[0,3]上任取的一个数,b是从区间[0,2]上任取的一个数,求关于x的一元二次方程x2+2x+b=0有实根的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.“k=1”是“函数$f(x)=\frac{{k-{e^x}}}{{1+k{e^x}}}$(k为常数)在定义域上是奇函数”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知sinθ>0,tanθ<0,则θ是(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步练习册答案