精英家教网 > 高中数学 > 题目详情
7.“函数f(x)=$\left\{\begin{array}{l}(a-1)x+2,x>2\\{a^x},x≤2\end{array}$在R上是单调递增函数”是“函数g(x)=log2(x2-ax+1)在[1,+∞)上是单调递增函数”的既不充分也不必要条件(填“充分不必要”,“必要不充分”,“充要”,“既不充分也不必要”).

分析 由于函数f(x)=$\left\{\begin{array}{l}(a-1)x+2,x>2\\{a^x},x≤2\end{array}$在R上是单调递增函数,可得$\left\{\begin{array}{l}{a-1>0}\\{2(a-1)+2≥{a}^{2}}\\{a>1}\end{array}\right.$.函数g(x)=log2(x2-ax+1)在[1,+∞)上是单调递增函数,$\frac{a}{2}≤1$,1-a+1>0,解出即可得出.

解答 解:∵函数f(x)=$\left\{\begin{array}{l}(a-1)x+2,x>2\\{a^x},x≤2\end{array}$在R上是单调递增函数,
∴$\left\{\begin{array}{l}{a-1>0}\\{2(a-1)+2≥{a}^{2}}\\{a>1}\end{array}\right.$,解得1<a≤2.
函数g(x)=log2(x2-ax+1)在[1,+∞)上是单调递增函数,$\frac{a}{2}≤1$,1-a+1>0,解得a<2.
函数f(x)=$\left\{\begin{array}{l}(a-1)x+2,x>2\\{a^x},x≤2\end{array}$在R上是单调递增函数”是“函数g(x)=log2(x2-ax+1)在[1,+∞)上是单调递增函数”的既不充分也不必要条件.
故答案为:既不充分也不必要.

点评 本题考查了函数的性质、不等式的解法及其性质、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.化简:cos58°cos13°+sin58°sin13°=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.展开(1+2x)3=1+6x+mx2+8x3,则m=12.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在线性回归模型中,分别选择了4个不同的模型,它们的相关指数R2依次为0.36、0.95、0.74、0.81,其中回归效果最好的模型的相关指数R2为(  )
A.0.95B.0.81C.0.74D.0.36

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图,则输出的i是(  )
A.8B.9C.10D.11

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.定义在R上的函数f(x)满足对任意x,y∈R恒有f(xy)=f(x)+f(y),且f(x)不恒为0,
(1)求f(1)和f(-1)的值;
(2)试判断f(x)的奇偶性,并加以证明;
(3)若x≥0时f(x)为增函数,求满足不等式f(x+1)-f(2-x)≤0的x取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知定义域为R的函数f(x)满足f(x)=$\frac{1}{2}$f(x-6),当x∈[0,6]时,f(x)=$\sqrt{3-|x-3|}$,若关于x的方程f(x)=m(x+6)在区间[-6,+∞)内恰有三个不等实根,则实数m的值为(  )
A.-$\frac{\sqrt{6}}{12}$B.$\frac{\sqrt{6}}{12}$C.$\frac{\sqrt{3}}{9}$D.以上均不正确

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知数列{an}的前n项和Sn满足Sn=4an-an+1(n∈N*),若a1=1,则an=(n+1)•2n-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设函数y=x2-4px-2的图象经过M(tanα,1),N(tanβ,1)两点.求2cos2αcos2β+psin2(α+β)+2sin2(α-β)的值.

查看答案和解析>>

同步练习册答案