12£®Æ½ÃæÖ±½Ç×ø±êϵxoyÖУ¬Ö±ÏßlµÄ²ÎÊý·½³Ì$\left\{\begin{array}{l}{x=-\sqrt{3}t}\\{y=\frac{2\sqrt{3}}{3}+t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬Ô²CµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=2cos¦È}\\{y=2sin¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬ÒÔ×ø±êÔ­µãOΪ¼«µã£¬xÖáµÄ·Ç¸º°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£®
£¨1£©ÇóÖ±ÏßlÓëÔ²CµÄ¼«×ø±ê·½³Ì£»
£¨2£©Ö±ÏßlÓëÔ²C½»ÓÚA¡¢BÁ½µã£¬Çó¹­ÐÎAOBµÄÃæ»ý£®

·ÖÎö £¨1£©ÓÉÈýÖÖ·½³ÌµÄ¹ØÏµÒ׵ã»
£¨2£©¿ÉµÃA£¨2£¬0£©¡¢B£¨-1£¬$\sqrt{3}$£©¡ÏAOB=150¡ã£¬ÓÉÉÈÐκÍÈý½ÇÐεÄÃæ»ýÒ׵ù­ÐÎÃæ»ý£®

½â´ð ½â£º£¨1£©¡ßÖ±ÏßlµÄ²ÎÊý·½³Ì$\left\{\begin{array}{l}{x=-\sqrt{3}t}\\{y=\frac{2\sqrt{3}}{3}+t}\end{array}\right.$£¬
¡à$\left\{\begin{array}{l}{¦Ñcos¦È=-\sqrt{3}t}\\{¦Ñsin¦È=\frac{2\sqrt{3}}{3}+t}\end{array}\right.$£¬ÏûÈ¥t¿ÉµÃ$\sqrt{3}$¦Ñsin¦È+¦Ñcos¦È=2£»
¡ßÔ²CµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=2cos¦È}\\{y=2sin¦È}\end{array}\right.$£¬
¡àÔ²CµÄ¼«×ø±ê·½³ÌΪ¦Ñ=2£»
£¨2£©ÓÉÌâÒâÒ×µÃÖ±ÏßlµÄÖ±½Ç×ø±ê·½³ÌΪy=-$\frac{\sqrt{3}}{3}$£¨x-2£©£¬
Ô²CµÄÖ±½Ç×ø±ê·½³ÌΪx2+y2=4£¬ÁªÁ¢·½³Ì¿É½âµÃÖ±ÏßlÓëÔ²C½»ÓÚA£¨2£¬0£©¡¢B£¨-1£¬$\sqrt{3}$£©Á½µã£¬
¡àÒ׵áÏAOB=150¡ã£¬¡à¹­ÐÎAOBµÄÃæ»ýS=$\frac{150}{360}$¡Á4¦Ð-$\frac{1}{2}¡Á2¡Á2¡Á$sin150¡ã=$\frac{5¦Ð}{3}$-1

µãÆÀ ±¾Ì⿼²é²ÎÊý·½³ÌºÍÆÕͨ·½³ÌÒÔ¼°¼«×ø±ê·½³Ì£¬Éæ¼°Èý½ÇÐκ͹­ÐεÄÃæ»ý£¬Êô»ù´¡Ì⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÔÚ¡÷ABCÖУ¬¡ÏA=60¡ãS¡÷ABC=5$\sqrt{3}$£¬b=5£¬ÔòsinBsinCµÄֵΪ£¨¡¡¡¡£©
A£®$\frac{1}{2}$B£®$\frac{4}{7}$C£®$\frac{5}{7}$D£®$\frac{\sqrt{2}}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®¹ý±ß³¤Îª2µÄÕý·½ÐεÄÖÐÐÄ×÷Ö±Ïßl½«Õý·½ÐηֳÉÁ½²¿·Ö£¬½«ÆäÖеÄÒ»¸ö²¿·ÖÑØÖ±Ïßl·­ÕÛµ½ÁíÒ»¸ö²¿·ÖÉÏ£®ÔòÁ½¸ö²¿·ÖͼÐÎÖв»ÖصþµÄÃæ»ýµÄ×î´óÖµÊÇ12-8$\sqrt{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÒÑÖªº¯Êýf£¨x£©=x2-e2£¬ÊÔÅжÏf£¨x£©µÄµ¥µ÷ÐÔ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®º£ÖÐһСµº£¬ÖÜΧanmileÄÚÓаµ½¸£® º£ÂÖÓÉÎ÷Ïò¶«º½ÐУ¬Íû¼ûÕ⵺ÔÚ±±Æ«¶«75¡ã£®º½ÐÐbnmileÒÔºó£¬Íû¼ûÕ⵺ÔÚ±±Æ«¶«60¡ã£®ÕâËÒº£ÂÖ²»¸Ä±äº½Ïò¼ÌÐøÇ°½ø£¬Ã»Óд¥½¸£®ÄÇôa¡¢bËùÂú×ãµÄ²»µÈ¹ØÏµÊÇ£¨¡¡¡¡£©
A£®a£¼$\frac{1}{2}$bB£®a£¾$\frac{1}{2}$bC£®a£¼$\frac{\sqrt{3}}{2}$bD£®a£¾$\frac{\sqrt{3}}{2}$b

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÒÑÖªº¯Êýf£¨x£©=$\frac{x^2}{lnx}$£®
£¨¢ñ£©Çóº¯Êýf£¨x£©ÔÚÇø¼ä[${e^{\frac{1}{4}}}$£¬e]ÉϵÄ×îÖµ£»
£¨¢ò£©Éèg£¨x£©=f£¨x£©-$\frac{4m£¨x-m£©}{lnx}$£¨0£¼m£¼$\frac{1}{2}$£©£¬
Èôº¯Êýg£¨x£©ÓÐÈý¸ö¼«Öµµã£¬ÉèΪa£¬b£¬cÇÒa£¼b£¼c£®
Ö¤Ã÷£º0£¼2a£¼b£¼1£¼c£¬²¢Çó³öº¯Êýg£¨x£©µÄµ¥µ÷Çø¼ä£¨ÓÃa£¬b£¬c±íʾ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®Ë«ÇúÏß$\frac{x^2}{4}-\frac{y^2}{4}$=1µÄÁ½Ìõ½¥½üÏß·½³ÌÊÇy=¡Àx£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÒÑÖªÖ±Ïßl¾­¹ýµãM0£¨1£¬5£©£¬Çãб½ÇÊÇ$\frac{¦Ð}{3}$£®
£¨1£©ÇóÖ±ÏßlµÄ²ÎÊý·½³Ì£»
£¨2£©ÇóÖ±ÏßlÓëÖ±Ïßx-y-2$\sqrt{3}$=0µÄ½»µãÓëµãM0µÄ¾àÀ룻
£¨3£©ÇóÖ±ÏßlÓëÔ²x2+y2=16µÄÁ½¸ö½»µãµ½µãM0µÄ¾àÀëµÄºÍÓë»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®ÒÑÖªÕý·½ÌåABCD-A1B1C1D1µÄÀⳤΪa£¬ÔòÒìÃæÖ±ÏßBDÓëB1CµÄ¾àÀëΪ$\frac{\sqrt{3}a}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸