分析 在直线x+y-2=0上取两点M(2,0),M(0,2). 在矩阵M,N对应的变换作用下分别对应于点M′,N′.推导出M′、N′的坐标,由题意,M′、N′在直线x+y-2=0上,列出方程组求出A=$[\begin{array}{l}{1}&{-1}\\{0}&{2}\end{array}]$,由此能求出矩阵A的逆矩阵A-1.
解答 解:在直线x+y-2=0上取两点M(2,0),M(0,2).M,N在矩阵M,N对应的变换作用下分别对应于点M′,N′.
∵$[\begin{array}{l}{1}&{a}\\{b}&{2}\end{array}]$$[\begin{array}{l}{2}\\{0}\end{array}]$=$[\begin{array}{l}{2}\\{2b}\end{array}]$,∴M′的坐标为(2,2b);
$[\begin{array}{l}{1}&{a}\\{b}&{2}\end{array}]$$[\begin{array}{l}{0}\\{2}\end{array}]$=$[\begin{array}{l}{2a}\\{4}\end{array}]$,∴N′的坐标为(2a,4).
由题意,M′、N′在直线x+y-2=0上,
∴$\left\{\begin{array}{l}{2+2b-2=0}\\{2a+4-2=0}\end{array}\right.$.
解得a=-1,b=0.
∴A=$[\begin{array}{l}{1}&{-1}\\{0}&{2}\end{array}]$,
∵$[\begin{array}{l}{1}&{-1}&{\;}&{1}&{0}\\{0}&{2}&{\;}&{0}&{1}\end{array}]$→$[\begin{array}{l}{1}&{-1}&{\;}&{1}&{0}\\{0}&{1}&{\;}&{0}&{\frac{1}{2}}\end{array}]$→$[\begin{array}{l}{1}&{0}&{\;}&{1}&{\frac{1}{2}}\\{0}&{1}&{\;}&{0}&{\frac{1}{2}}\end{array}]$.
∴A-1=$[\begin{array}{l}{1}&{\frac{1}{2}}\\{0}&{\frac{1}{2}}\end{array}]$.
点评 本题考查矩阵的逆矩阵的求法,是中档题,解题时要认真审题,注意矩阵初等变换的性质的合理运用.
科目:高中数学 来源: 题型:选择题
| A. | $(0,\frac{4}{3})$ | B. | $(0,\frac{4}{3}]$ | C. | $\{\frac{1}{3},1,\frac{4}{3}\}$ | D. | $\{\frac{1}{3},1\}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{30}$ | B. | $2\sqrt{30}$ | C. | $\sqrt{51}$ | D. | $2\sqrt{51}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com