分析 由n>0,可得3n+$\frac{4}{{n}^{2}}$=$\frac{3n}{2}$+$\frac{3n}{2}$+$\frac{4}{{n}^{2}}$,运用三元均值不等式:a+b+c≥3$\root{3}{abc}$(a,b,c>0,且a=b=c时取得等号),即可得证.
解答 证明:n>0时,3n+$\frac{4}{{n}^{2}}$=$\frac{3n}{2}$+$\frac{3n}{2}$+$\frac{4}{{n}^{2}}$
≥3$\root{3}{\frac{3n}{2}•\frac{3n}{2}•\frac{4}{{n}^{2}}}$=3$\root{3}{9}$,
当且仅当$\frac{3n}{2}$=$\frac{4}{{n}^{2}}$,即n=$\root{3}{\frac{8}{3}}$时,取得等号.
则3n+$\frac{4}{{n}^{2}}$≥3$\root{3}{9}$.
点评 本题考查不等式的证明,注意运用三元均值不等式,考查变形的技巧和推理能力,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{10}}}{2}$ | B. | $\sqrt{13}$ | C. | $\frac{{\sqrt{10}}}{2}$或$\sqrt{13}$ | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com