精英家教网 > 高中数学 > 题目详情
6.函数f(x)=4sin2x的最小正周期为(  )
A.B.πC.$\frac{π}{2}$D.$\frac{π}{4}$

分析 根据函数y=Asin(ωx+φ)的周期为$\frac{2π}{ω}$,得出结论.

解答 解:函数f(x)=4sin2x的最小正周期为$\frac{2π}{2}$=π,
故选:B.

点评 本题主要考查函数y=Asin(ωx+φ)的周期性,利用了函数y=Asin(ωx+φ)的周期为$\frac{2π}{ω}$,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知双曲线方程:x2-$\frac{y^2}{3}$=1,则以A(2,1)为中点的弦所在直线l的方程是(  )
A.6x+y-11=0B.6x-y-11=0C.x-6y-11=0D.x+6y+11=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下面使用类比推理正确的是(  )
A.直线a,b,c,若a∥b,b∥c,则a∥c,类推出:向量$\overrightarrow a$,$\overrightarrow b$,$\overrightarrow c$,若$\overrightarrow a$∥$\overrightarrow b$,$\overrightarrow b$∥$\overrightarrow c$,则$\overrightarrow a$∥$\overrightarrow c$
B.同一平面内,直线a,b,c,若a⊥c,b⊥c,则a∥b,类推出:空间中,直线a,b,c,若a⊥c,b⊥c,则a∥b
C.实数a,b,若方程x2+ax+b=0有实数根,则a2≥4b,类推出:复数a,b,若方程x2+ax+b=0有实数根,则a2≥4b
D.由向量加法的几何意义,可以类比得到复数加法的几何意义

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=cosx+$\frac{a}{2}$x2-1(a∈R).
(1)证明:当a≥1时,f(x)有唯一的零点;
(2)若f(x)≥0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在平面直角坐标系xOy中,直线x+y-2=0在矩阵A=$[\begin{array}{l}{1}&{a}\\{b}&{2}\end{array}]$对应的变换作用下得到的直线仍为x+y-2=0,求矩阵A的逆矩阵A-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知F1,F2为椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,M为椭圆C的上顶点,且|MF1|=2,右焦点与右顶点的距离为1.
(1)求椭圆C的标准方程;
(2)若直线l与椭圆C相交于A,B两点,且直线OA,OB的斜率kOA,kOB满足kOA•kOB=-$\frac{3}{4}$,求△AOB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.正方体ABCD-A1B1C1D1的棱长为8,P、Q分别是棱A1B1和B1C1的中点,则点A1到平面APQ的距离为$\frac{8}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.角α的终边经过点(4,3),角β的终边经过点(-7,-1),则sin(α+β)=-$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.a,b都是正数,求证(a+b)(a2+b2)(a3+b3)≥8a3b3

查看答案和解析>>

同步练习册答案