·ÖÎö £¨1£©ÓÉÍÖÔ²µÄÐÔÖÊ£¬|MF1|=2£¬¼´a=2£¬a-c=1£¬¼´¿ÉÇóµÃc=1£¬b2=3£¬¼´¿ÉÇóµÃÍÖÔ²µÄ·½³Ì£»
£¨2£©µ±Ö±ÏßlбÂʲ»´æÔÚʱ£¬kOA•kOB=-$\frac{3}{4}$£¬ÇóµÃAºÍBµã×ø±ê£¬ÀûÓÃÈý½ÇÐÎÃæ»ý¹«Ê½£¬¼´¿ÉÇóµÃ¡÷AOBµÄÃæ»ý£¬µ±Ö±ÏßlµÄбÂÊ´æÔÚ£¬Éè³öÖ±ÏßlµÄ·½³Ì£¬½«Ö±ÏßlµÄ·½³Ì´úÈëÍÖÔ²·½³Ì£¬ÏûÈ¥yµÃµ½¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ì£¬¸ù¾ÝΤ´ï¶¨ÀíÇóµÃx1+x2ºÍx1•x2£¬¸ù¾ÝбÂʹ«Ê½ÇóµÃ±íʾ³ökOA•kOB£¬Óɵ㵽ֱÏß¾àÀ빫ʽ¼°Èý½ÇÐÎÃæ»ý¹«Ê½£¬¼´¿ÉÇóµÃ¡÷AOBµÄÃæ»ý£¬×ÛÉϼ´¿ÉÇóµÃ¡÷AOBµÄÃæ»ý£®
½â´ð ½â£º£¨1£©ÓÉÌâÒâµÃ£¬a=2£¬a-c=1£¬µÃc=1£¬a2=b2+c2£¬
¡àb2=3£¬
¡àÍÖÔ²µÄ·½³ÌΪ$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$£¬¡£¨3·Ö£©
£¨2£©¢Ùµ±Ö±ÏßlµÄбÂʲ»´æÔÚʱ£¬Éèl£ºx=n£¬²»·ÁÈ¡A£¨n£¬$\sqrt{3£¨1-\frac{{n}^{2}}{4}£©}$£©£¬B£¨n£¬-$\sqrt{3£¨1-\frac{{n}^{2}}{4}£©}$£©£¬
ÓÉkOA•kOB=-$\frac{3}{4}$£¬½âµÃn2=2£®
´Ëʱ£¬S¡÷AOB=$\frac{1}{2}$ØABØ•ØnØ=$\sqrt{3}$£¬¡£¨5·Ö£©
¢Úµ±Ö±ÏßlµÄбÂÊ´æÔÚʱ£¬Éèl£ºy=kx+m£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
ÓÉ$\left\{\begin{array}{l}{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\\{y=kx+m}\end{array}\right.$£¬ÏûÈ¥y»¯¼òµÃ£º£¨3+4k2£©x2+8kmx+4m2-12=0£¬
ÓÉΤ´ï¶¨Àí¿ÉÖªx1+x2=-$\frac{8km}{3+4{k}^{2}}$£¬x1•x2=$\frac{4{m}^{2}-12}{3+4{k}^{2}}$£¬¡÷£¾0µÃ4k2-m2+3£¾0¡£¨7·Ö£©
kOA•kOB=-$\frac{3}{4}$£¬$\frac{{y}_{1}y2}{{x}_{1}{x}_{2}}$=-$\frac{3}{4}$£¬¼´£º3x1•x2+4y1•y2=0£¬
¼´£º3x1•x2+4£¨kx1+m£©£¨kx2+m£©=0£¬
¼´£º£¨3+4k2£©x1•x2+4km£¨x1+m2£©+4m2=0£¬
»¯¼òÕûÀíµÃ£º3+4k2=2m2£¬¡£¨9·Ö£©
ÓÉÏÒ³¤¹«Ê½µÃ£ºØABØ=$\sqrt{£¨1+{k}^{2}£©}$•$\sqrt{£¨{x}_{1}+{x}_{2}£©^{2}-4{x}_{1}{x}_{2}}$£¬
=$\sqrt{1+{k}^{2}}$•$\sqrt{\frac{48£¨4{k}^{2}-{m}^{2}+3£©}{£¨3+4{k}^{2}£©^{2}}}$£¬
Oµ½Ö±Ïßy=kx+mµÄ¾àÀëd=$\frac{ØmØ}{\sqrt{1+{k}^{2}}}$£¬Ôò£º
S¡÷AOB=$\frac{1}{2}$ØABØ•d=$\sqrt{\frac{12£¨4{k}^{2}+3-{m}^{2}£©}{£¨3+4{k}^{2}£©^{2}}}$ØmØ£¬
=$\sqrt{\frac{12£¨2{m}^{2}-{m}^{2}£©}{£¨2{m}^{2}£©^{2}}}$•ØmØ£¬
=$\sqrt{3}$£® ¡£¨11·Ö£©
×ÛÉÏËùÊö£¬S¡÷AOB=$\sqrt{3}$£® ¡£¨12·Ö£©
µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²µÄ±ê×¼·½³Ì£¬¿¼²éÁËÖ±ÏߺÍÔ²×¶ÇúÏߵĹØÏµ£¬¸ÃÌâ˼·ÇåÎú£¬ÔËË㸴ÔÓ£¬¿¼²éÁËѧÉúµÄÔËËãÄÜÁ¦£®ÊôÄÑÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | -sin2x | B£® | cos2x | C£® | sin2x | D£® | -cos2x |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | -$\frac{{\sqrt{3}}}{2}$ | B£® | $\frac{{\sqrt{3}}}{2}$ | C£® | -$\frac{1}{2}$ | D£® | $\frac{1}{2}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 21¦Ð | B£® | 24¦Ð | C£® | 28¦Ð | D£® | 36¦Ð |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 2¦Ð | B£® | ¦Ð | C£® | $\frac{¦Ð}{2}$ | D£® | $\frac{¦Ð}{4}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{4\sqrt{3}}{3}$ | B£® | $4\sqrt{3}$ | C£® | $\frac{{2\sqrt{3}}}{3}$ | D£® | $2\sqrt{3}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | y2=8x»òy2=-8x | B£® | x2=8y»òx=-8y | C£® | x2=4y»òx2=-4y | D£® | y2=4x»òy2=-4x |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | £¨1£¬3£© | B£® | £¨2£¬3£© | C£® | £¨1£¬2£© | D£® | £¨$\sqrt{5}$£¬3£© |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com