精英家教网 > 高中数学 > 题目详情
18.正方体ABCD-A1B1C1D1的棱长为8,P、Q分别是棱A1B1和B1C1的中点,则点A1到平面APQ的距离为$\frac{8}{3}$.

分析 利用等体积转换,即可求出点A1到平面APQ的距离.

解答 解:由题意,AP=4$\sqrt{5}$,PQ=4$\sqrt{2}$,AQ=12,
∴cos∠APQ=$\frac{80+32-144}{2×4\sqrt{5}×4\sqrt{2}}$=$\frac{\sqrt{10}}{10}$,
∴sin∠APQ=$\frac{3\sqrt{10}}{10}$,
∴S△APQ=$\frac{1}{2}×4\sqrt{5}×4\sqrt{2}×\frac{3\sqrt{10}}{10}$=24,
设点A1到平面APQ的距离为h,则由等体积可得$\frac{1}{3}×\frac{1}{2}×8×4×4$=$\frac{1}{3}×24×h$,
∴h=$\frac{8}{3}$.
故答案为:$\frac{8}{3}$.

点评 本题考查求点A1到平面APQ的距离,考查体积的计算,正确求出△APQ的面积是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.在四面体ABCD中,AC=BD=3,AD=BC=3,AB=CD=4,则该四面体的外接球的表面积为17π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知圆O:x2+y2=4与x轴负半轴的交点为A,点P在直线l:$\sqrt{3}$x+y-a=0上,过点P作圆O的切线,切点为T.
(1)若a=8,切点T($\sqrt{3}$,-1),求直线AP的方程;
(2)若PA=2PT,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数f(x)=4sin2x的最小正周期为(  )
A.B.πC.$\frac{π}{2}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知直线l:mx-y=1,若直线l与直线x+m(m-1)y=2垂直,则m的值为0或2,动直线l被圆C:x2-2x+y2-8=0截得的最短弦长为2$\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.定义在(-∞,0)∪(0,+∞)上的函数f(x),总有f(mn)=f(m)f(n),且f(x)>0,当x>1时,f(x)>1.
(1)求f(1),f(-1)的值;
(2)判断函数的奇偶性,并证明;
(3)判断函数在(0,+∞)上的单调性,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知等差数列{an}满足:a3=6,a5+a7=24,{an}的前n项和为Sn
(1)求an及Sn
(2)令bn=$\frac{1}{{{a_n}^2-1}}$(n∈N+),求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在△ABC内角A,B,C的对边分别是a,b,c,已知a=$2\sqrt{3}$,c=$2\sqrt{2}$,∠A=60°,则∠C的大小为(  )
A.$\frac{π}{4}$或$\frac{3π}{4}$B.$\frac{π}{3}$或$\frac{2π}{3}$C.$\frac{π}{3}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知等差数列{an}的前5项之和为15,则${2^{{a_2}+{a_4}}}$=(  )
A.16B.8C.64D.128

查看答案和解析>>

同步练习册答案